Atomic-scale description of interfaces in rutile/sodium silicate glass–crystal composites
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Physical Chemistry Chemical Physics, Cyfrol 20, 21.06.2018, t. 17624-17636.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Atomic-scale description of interfaces in rutile/sodium silicate glass–crystal composites
AU - Fossati, Paul C.M.
AU - Rushton, Michael
AU - Lee, William
PY - 2018/6/21
Y1 - 2018/6/21
N2 - In this work interfaces between (Na2O)x(SiO2)1−x glasses (for x = 0.0, 0.1 and 0.2) and TiO2 crystals are simulated using molecular dynamics and empirical potentials. Interfaces are presented for the distinct terminating surfaces of TiO2 with Miller indices ≤2, the properties of which have been investigated using atomistic models. Simulations showed that partially ordered layers had been induced in the glass close to the interfaces, with successive oxygen-rich and cation-rich planes being noted. The first silicate layer in contact with the crystal tended to be highly-structured, with Si ions occupying well-defined positions that depend on the orientation of the crystal at the interface, and showing 2-dimensional ordering depending on glass composition. Finally, interface energies were calculated. These indicated that the interface formation may stabilise a crystal surface in comparison to maintaining a free surface. Results are presented suggesting that the structural flexibility of the glass network allows it to conform to the crystal, thereby providing charge compensation and avoiding large relaxation of the crystal structure close to the interfaces. Such interfacial properties could be crucial to improving phenomenological models of glass–crystal composite properties.
AB - In this work interfaces between (Na2O)x(SiO2)1−x glasses (for x = 0.0, 0.1 and 0.2) and TiO2 crystals are simulated using molecular dynamics and empirical potentials. Interfaces are presented for the distinct terminating surfaces of TiO2 with Miller indices ≤2, the properties of which have been investigated using atomistic models. Simulations showed that partially ordered layers had been induced in the glass close to the interfaces, with successive oxygen-rich and cation-rich planes being noted. The first silicate layer in contact with the crystal tended to be highly-structured, with Si ions occupying well-defined positions that depend on the orientation of the crystal at the interface, and showing 2-dimensional ordering depending on glass composition. Finally, interface energies were calculated. These indicated that the interface formation may stabilise a crystal surface in comparison to maintaining a free surface. Results are presented suggesting that the structural flexibility of the glass network allows it to conform to the crystal, thereby providing charge compensation and avoiding large relaxation of the crystal structure close to the interfaces. Such interfacial properties could be crucial to improving phenomenological models of glass–crystal composite properties.
U2 - 10.1039/C8CP00675J
DO - 10.1039/C8CP00675J
M3 - Article
VL - 20
SP - 17624
EP - 17636
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
ER -