Biosynthesis of Zinc Sulfide Quantum Dots Using Waste Off-Gas from Metal Bioremediation Process
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Advanced Materials Research, Cyfrol 1130, 11.2015, t. 555-559.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Biosynthesis of Zinc Sulfide Quantum Dots Using Waste Off-Gas from Metal Bioremediation Process
AU - Roussel, Jimmy
AU - Murray, A.J.
AU - Rolley, John
AU - Johnson, D. Barrie
AU - Macaskie, Lynne E.
PY - 2015/11
Y1 - 2015/11
N2 - Dissimilatory reduction of sulfate, mediated by various species of sulfate-reducing bacteria (SRB), can be used to remediate acid mine drainage (AMD). Hydrogen sulfide (H2S/HS-) generated by SRB can be used to remove toxic metals from AMD as sulfide biominerals. For this, SRB are usually housed in separate reactor vessels to those where metal sulfides are generated; H2S is delivered to AMD-containing vessels in solution or as a gas. This allows more controlled separation of metal precipitation and facilitates enhanced process control. Industries such as optoelectronics use quantum dots (QDs) in, for example, light emitting diodes and solar photovoltaics. QDs are nanocrystals with semiconductor bands that allow them to absorb light and re-emit it intensely at specific wavelength couples. Small nanoparticles have the possibility to get electrons shifted to a higher energy and then emit light during the relaxation phase. The QD elemental composition and the presence of doping agent determines its electronic band gaps and can be used to tune the QD to desired emission wavelengths. Traditional QD production at scale is costly and/or complex. Waste H2S gas from growth of SRB has been used to make zinc sulfide QDs which are indistinguishable from ’classically’ prepared counterparts with respect to their physical and optical properties. Clean recycling of minewater bioremediation process waste gas into high value QD product is described.
AB - Dissimilatory reduction of sulfate, mediated by various species of sulfate-reducing bacteria (SRB), can be used to remediate acid mine drainage (AMD). Hydrogen sulfide (H2S/HS-) generated by SRB can be used to remove toxic metals from AMD as sulfide biominerals. For this, SRB are usually housed in separate reactor vessels to those where metal sulfides are generated; H2S is delivered to AMD-containing vessels in solution or as a gas. This allows more controlled separation of metal precipitation and facilitates enhanced process control. Industries such as optoelectronics use quantum dots (QDs) in, for example, light emitting diodes and solar photovoltaics. QDs are nanocrystals with semiconductor bands that allow them to absorb light and re-emit it intensely at specific wavelength couples. Small nanoparticles have the possibility to get electrons shifted to a higher energy and then emit light during the relaxation phase. The QD elemental composition and the presence of doping agent determines its electronic band gaps and can be used to tune the QD to desired emission wavelengths. Traditional QD production at scale is costly and/or complex. Waste H2S gas from growth of SRB has been used to make zinc sulfide QDs which are indistinguishable from ’classically’ prepared counterparts with respect to their physical and optical properties. Clean recycling of minewater bioremediation process waste gas into high value QD product is described.
U2 - 10.4028/www.scientific.net/AMR.1130.555
DO - 10.4028/www.scientific.net/AMR.1130.555
M3 - Article
VL - 1130
SP - 555
EP - 559
JO - Advanced Materials Research
JF - Advanced Materials Research
SN - 1022-6680
ER -