Characterisation of aluminium black dross before and after stepwise salt-phase dissolution in non-aqueous solvents
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Journal of Hazardous Materials, Cyfrol 401, 05.01.2021, t. 123351.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Characterisation of aluminium black dross before and after stepwise salt-phase dissolution in non-aqueous solvents
AU - Hu, Keting
AU - Reed, Dan
AU - Robshaw, Thomas
AU - Smith, Rachel
AU - Ogden, Mark
PY - 2021/1/5
Y1 - 2021/1/5
N2 - Aqueous leaching to recover salts from black dross is accompanied by hazardous gas generation. The gas-generating phases vary significantly across differently sourced black dross. The challenge for the industry is how to accurately qualify and quantify the problematic components of black dross, especially minor reactive phases. This paper employed XRF, EDX, XRD, Raman and FTIR to analyse two industrial black dross samples from various sources. A novel pre-treatment method before characterisation was devised using water-free glycerol and anhydrous ethanol to remove the major salt components, without reacting the gas-generating phases. The results show that around 80 % of the salts existent in the black dross had been removed successfully through pre-treatment. This method facilitated the determination of minor reactive phases characterised by XRD, XRF and EDX, and had little effect on the characterisation by Raman and FTIR spectroscopy. The ammonia-generating nitride phase was detected by XRD, Raman and FTIR. The FTIR, moreover, allowed the successful identification of carbide. Best practice guidelines for the industrial analysis of black dross has been proposed. The guidelines would provide industry with evidence to include or adjust gas treatment methods and operational parameters when dealing with compositional variability in industrially-sourced black dross.
AB - Aqueous leaching to recover salts from black dross is accompanied by hazardous gas generation. The gas-generating phases vary significantly across differently sourced black dross. The challenge for the industry is how to accurately qualify and quantify the problematic components of black dross, especially minor reactive phases. This paper employed XRF, EDX, XRD, Raman and FTIR to analyse two industrial black dross samples from various sources. A novel pre-treatment method before characterisation was devised using water-free glycerol and anhydrous ethanol to remove the major salt components, without reacting the gas-generating phases. The results show that around 80 % of the salts existent in the black dross had been removed successfully through pre-treatment. This method facilitated the determination of minor reactive phases characterised by XRD, XRF and EDX, and had little effect on the characterisation by Raman and FTIR spectroscopy. The ammonia-generating nitride phase was detected by XRD, Raman and FTIR. The FTIR, moreover, allowed the successful identification of carbide. Best practice guidelines for the industrial analysis of black dross has been proposed. The guidelines would provide industry with evidence to include or adjust gas treatment methods and operational parameters when dealing with compositional variability in industrially-sourced black dross.
KW - Hazardous waste
KW - Aluminium nitride
KW - Aluminium black dross
KW - Characterisation
KW - Salts dissolution
U2 - 10.1016/j.jhazmat.2020.123351
DO - 10.1016/j.jhazmat.2020.123351
M3 - Article
VL - 401
SP - 123351
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
SN - 0304-3894
ER -