Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II)

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • Bing Wang
    Beiijing Forestry University, State Key Laboratory for Lignocellulosic Chemistry
  • Jia-Long Wen
    Beiijing Forestry University, State Key Laboratory for Lignocellulosic Chemistry
  • Shao-Long Sun
    Beiijing Forestry University, State Key Laboratory for Lignocellulosic Chemistry
  • Han-Min Wang
    Beiijing Forestry University, State Key Laboratory for Lignocellulosic Chemistry
  • Shuang-Fei Wang
    Guangxi University
  • Qiuyun Liu
  • Adam Charlton
  • Run-Cang Sun
    Beiijing Forestry University, State Key Laboratory for Lignocellulosic Chemistry
The removal of heavy metals ions from wastewater by an economic, high-effective, and environmentally friendly method is particularly important. In this study, an effective lignin-based bio-adsorbent (SAPL-1.5), which contained specific functional groups and spatial cross-linking structures, was synthesized through chemical modification. SAPL-1.5 was comprehensively characterized by 31P, 1H, 13C NMR, and elemental analysis as compared to the raw lignin. The results showed that the chemical reactivity of lignin was significantly improved after phenolation process, and the adsorption groups were successfully grafted onto lignin macromolecule. In addition, the influences of pH, SAPL-1.5 dosage, contact time, and initial Pb (II) concentration on the adsorption performance was systematically investigated. The highest adsorption capacity reached to 130.2 mg/g (Pb (II), 140 mg/L), and a removal efficiency of 100% was achieved (Pb (II), 20 mg/L). Moreover, the adsorption isotherm and adsorption kinetics indicated that the results were fitting well with the Langmuir and pseudo-second-order model, respectively. Furthermore, the removal efficiency of SAPL-1.5 for Pb (II) (20 mg/mL) still maintained over 85% after 5 cycles. Therefore, the lignin-based material obtained could be considered as a promising potential adsorbent with a low cost, high performance and reutilization for its application in the wastewater treatment process. It is believed that the lignin-based bio-sorbent can enlarge the lignin valorization in the current biorefinery process.
Iaith wreiddiolSaesneg
Tudalennau (o-i)72-80
CyfnodolynIndustrial Crops and Products
Cyfrol108
Dyddiad ar-lein cynnar15 Meh 2017
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 1 Rhag 2017

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau