Climate mitigation by dairy intensification depends on intensive use of spared grassland
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Global Change Biology, Cyfrol 24, Rhif 2, 02.2018, t. 681-693.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Climate mitigation by dairy intensification depends on intensive use of spared grassland
AU - Styles, David
AU - Gonzalez Mejia, Alejandra
AU - Moorby, Jon
AU - Foskolos, Andreas
AU - Gibbons, James
PY - 2018/2
Y1 - 2018/2
N2 - Milk and beef production cause 9% of global greenhouse gas (GHG) emissions. Previous life cycle assessment (LCA) studies have shown that dairy intensification reduces the carbon footprint of milk by increasing animal productivity and feed conversion efficiency. None of these studies simultaneously evaluated indirect GHG effects incurred via teleconnections with expansion of feed crop production and replacement suckler-beef production. We applied consequential LCA to incorporate these effects into GHG mitigation calculations for intensification scenarios among grazing-based dairy farms in an industrialised country (UK), in which milk production shifts from average to intensive farm typologies, involving higher milk yields per cow and more maize and concentrate feed in cattle diets. Attributional LCA indicated a reduction of up to 0.10 kg CO2e kg-1 milk following intensification, reflecting improved feed conversion efficiency. However, consequential LCA indicated that land use change associated with increased demand for maize and concentrate feed, plus additional suckler-beef production to replace reduced dairy-beef output, significantly increased GHG emissions following intensification. International displacement of replacement suckler-beef production to the “global beef frontier” in Brazil resulted in small GHG savings for the UK GHG inventory, but contributed to a net increase in international GHG emissions equivalent to 0.63 kg CO2e kg-1 milk. Use of spared dairy grassland for intensive beef production can lead to net GHG mitigation by replacing extensive beef production, enabling afforestation on larger areas of lower quality grassland, or by avoiding expansion of international (Brazilian) beef production. We recommend that LCA boundaries are expanded when evaluating livestock intensification pathways, in order to avoid potentially misleading conclusions being drawn from “snapshot” carbon footprints. We conclude that dairy intensification in industrialised countries can lead to significant international carbon leakage, and only achieves GHG mitigation when spared dairy grassland is used to intensify beef production, freeing up larger areas for afforestation.
AB - Milk and beef production cause 9% of global greenhouse gas (GHG) emissions. Previous life cycle assessment (LCA) studies have shown that dairy intensification reduces the carbon footprint of milk by increasing animal productivity and feed conversion efficiency. None of these studies simultaneously evaluated indirect GHG effects incurred via teleconnections with expansion of feed crop production and replacement suckler-beef production. We applied consequential LCA to incorporate these effects into GHG mitigation calculations for intensification scenarios among grazing-based dairy farms in an industrialised country (UK), in which milk production shifts from average to intensive farm typologies, involving higher milk yields per cow and more maize and concentrate feed in cattle diets. Attributional LCA indicated a reduction of up to 0.10 kg CO2e kg-1 milk following intensification, reflecting improved feed conversion efficiency. However, consequential LCA indicated that land use change associated with increased demand for maize and concentrate feed, plus additional suckler-beef production to replace reduced dairy-beef output, significantly increased GHG emissions following intensification. International displacement of replacement suckler-beef production to the “global beef frontier” in Brazil resulted in small GHG savings for the UK GHG inventory, but contributed to a net increase in international GHG emissions equivalent to 0.63 kg CO2e kg-1 milk. Use of spared dairy grassland for intensive beef production can lead to net GHG mitigation by replacing extensive beef production, enabling afforestation on larger areas of lower quality grassland, or by avoiding expansion of international (Brazilian) beef production. We recommend that LCA boundaries are expanded when evaluating livestock intensification pathways, in order to avoid potentially misleading conclusions being drawn from “snapshot” carbon footprints. We conclude that dairy intensification in industrialised countries can lead to significant international carbon leakage, and only achieves GHG mitigation when spared dairy grassland is used to intensify beef production, freeing up larger areas for afforestation.
KW - Sustainable intensification
KW - Climate change
KW - Agriculture
KW - life cycle assessment
KW - land sparing
KW - consequential LCA
UR - https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fgcb.13868&file=gcb13868-sup-0001-TableS6.1-S6.2.xlsx
U2 - 10.1111/gcb.13868
DO - 10.1111/gcb.13868
M3 - Article
VL - 24
SP - 681
EP - 693
JO - Global Change Biology
JF - Global Change Biology
SN - 1365-2486
IS - 2
ER -