Complete involute rewriting systems

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

StandardStandard

Complete involute rewriting systems. / Evans, Gareth A.; Wensley, Christopher D.
Yn: Journal of Symbolic Computation, Cyfrol 42, 2007, t. 1034-1051.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

Evans, GA & Wensley, CD 2007, 'Complete involute rewriting systems', Journal of Symbolic Computation, cyfrol. 42, tt. 1034-1051. https://doi.org/10.1016/j.jsc.2007.07.005

APA

Evans, G. A., & Wensley, C. D. (2007). Complete involute rewriting systems. Journal of Symbolic Computation, 42, 1034-1051. https://doi.org/10.1016/j.jsc.2007.07.005

CBE

Evans GA, Wensley CD. 2007. Complete involute rewriting systems. Journal of Symbolic Computation. 42:1034-1051. https://doi.org/10.1016/j.jsc.2007.07.005

MLA

Evans, Gareth A. a Christopher D. Wensley. "Complete involute rewriting systems". Journal of Symbolic Computation. 2007, 42. 1034-1051. https://doi.org/10.1016/j.jsc.2007.07.005

VancouverVancouver

Evans GA, Wensley CD. Complete involute rewriting systems. Journal of Symbolic Computation. 2007;42:1034-1051. doi: 10.1016/j.jsc.2007.07.005

Author

Evans, Gareth A. ; Wensley, Christopher D. / Complete involute rewriting systems. Yn: Journal of Symbolic Computation. 2007 ; Cyfrol 42. tt. 1034-1051.

RIS

TY - JOUR

T1 - Complete involute rewriting systems

AU - Evans, Gareth A.

AU - Wensley, Christopher D.

PY - 2007

Y1 - 2007

N2 - Given a monoid string rewriting system M, one way of obtaining a complete rewriting system for M is to use the classical Knuth–Bendix critical pairs completion algorithm. It is well-known that this algorithm is equivalent to computing a noncommutative Gröbner basis for M. This article develops an alternative approach, using noncommutative involutive basis methods to obtain a complete involutive rewriting system for M.

AB - Given a monoid string rewriting system M, one way of obtaining a complete rewriting system for M is to use the classical Knuth–Bendix critical pairs completion algorithm. It is well-known that this algorithm is equivalent to computing a noncommutative Gröbner basis for M. This article develops an alternative approach, using noncommutative involutive basis methods to obtain a complete involutive rewriting system for M.

KW - Groebner basis, string rewriting, Knuth-Bendix, involute basis

U2 - 10.1016/j.jsc.2007.07.005

DO - 10.1016/j.jsc.2007.07.005

M3 - Article

VL - 42

SP - 1034

EP - 1051

JO - Journal of Symbolic Computation

JF - Journal of Symbolic Computation

ER -