Conditions for attaining the global minimum in maximum likelihood system identification

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dangosydd eitem ddigidol (DOI)

  • Y. Zou
    University of Manchester
  • W.P. Heath
    University of Manchester
Maximum likelihood estimation(MLE) is a popular technique in both open and closed loop identification. However when the landscape of likelihood function has several local minima, gradient based optimization might end up with local convergence. To avoid this, various non-local-minimum conditions are derived in this paper. Here we consider different model structures, in particular Output-Error, ARMAX, and Box-Jenkins models
Iaith wreiddiolAnadnabyddus
Tudalennau (o-i)1110-1115
Nifer y tudalennau6
CyfnodolynIFAC Proceedings Volumes (IFAC-PapersOnline)
Cyfrol42
Rhif y cyfnodolyn10
Dyddiad ar-lein cynnar19 Chwef 2010
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 21 Ebr 2016
Cyhoeddwyd yn allanolIe
Gweld graff cysylltiadau