Coulomb excitation of the $|T_z|=12, A=23$ mirror pair
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
Fersiynau electronig
Dogfennau
- Mg23_Accepted
Llawysgrif awdur wedi’i dderbyn, 920 KB, dogfen-PDF
Trwydded: CC BY Dangos trwydded
Dangosydd eitem ddigidol (DOI)
Background: Electric-quadrupole (E2) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of N=Z represent a convenient laboratory for testing deficiencies in such models, making use of the isospin symmetry of the systems.
Purpose: Uncertainties associated with literature E2 strengths in 23Mg are some of the largest in Tz=∣∣12∣∣ nuclei in the sd shell. The purpose of the present paper is to improve the precision with which these values are known, to enable better comparison with theoretical models.
Methods: Coulomb-excitation measurements of 23Mg and 23Na were performed at the TRIUMF-ISAC facility using the TIGRESS spectrometer. They were used to determine the E2 matrix elements of mixed E2/M1 transitions.
Results: Reduced E2 transition strengths, B(E2), were extracted for 23Mg and 23Na. Their precision was improved by factors of approximately 6 for both isotopes, while agreeing within uncertainties with previous measurements.
Conclusions: A comparison was made with both shell-model and ab initio valence-space in-medium similarity renormalization group calculations. Valence-space in-medium similarity renormalization group calculations were found to underpredict the absolute E2 strength, in agreement with previous studies.
Purpose: Uncertainties associated with literature E2 strengths in 23Mg are some of the largest in Tz=∣∣12∣∣ nuclei in the sd shell. The purpose of the present paper is to improve the precision with which these values are known, to enable better comparison with theoretical models.
Methods: Coulomb-excitation measurements of 23Mg and 23Na were performed at the TRIUMF-ISAC facility using the TIGRESS spectrometer. They were used to determine the E2 matrix elements of mixed E2/M1 transitions.
Results: Reduced E2 transition strengths, B(E2), were extracted for 23Mg and 23Na. Their precision was improved by factors of approximately 6 for both isotopes, while agreeing within uncertainties with previous measurements.
Conclusions: A comparison was made with both shell-model and ab initio valence-space in-medium similarity renormalization group calculations. Valence-space in-medium similarity renormalization group calculations were found to underpredict the absolute E2 strength, in agreement with previous studies.
Iaith wreiddiol | Saesneg |
---|---|
Cyfnodolyn | Physical Review C |
Cyfrol | 105 |
Rhif y cyfnodolyn | 3 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 28 Maw 2022 |
Cyfanswm lawlrlwytho
Nid oes data ar gael