Creating short-term stockmarket trading strategies using artificial neural networks: A case study

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad i Gynhadledd

Fersiynau electronig

Developing short-term stockmarket trading systems is a complex process, as there is a great deal of random noise present in the time series data of individual securities. The primary difficulty in training neural networks to identify return expectations is to find variables to help identify the signal present in the data. In this paper, the authors follow the previously published Vanstone and Finnie methodology. They develop a successful neural network, and demonstrate its effectiveness as the core element of a financially viable trading system.
Iaith wreiddiolSaesneg
TeitlWORLD CONGRESS ON ENGINEERING 2008, VOLS I-II
GolygyddionSI Ao, L Gelman, DWL Hukins, A Hunter, AM Korsunsky
CyhoeddwrINT ASSOC ENGINEERS-IAENG
Tudalennau80-84
Nifer y tudalennau5
ISBN (Argraffiad)978-988-98671-9-5
StatwsCyhoeddwyd - 2008
Cyhoeddwyd yn allanolIe

Cyfres gyhoeddiadau

EnwLecture Notes in Engineering and Computer Science
CyhoeddwrINT ASSOC ENGINEERS-IAENG
Gweld graff cysylltiadau