Deep visual unsupervised domain adaptation for classification tasks: a survey

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dangosydd eitem ddigidol (DOI)

  • Yeganeh Madadi
    Azad University
  • Vahid Seydi
    Azad University
  • Kamal Nasrollahi
    Aalborg University
  • Reshad Hosseini
    University of Tehran
  • Thomas B Moeslund
    Aalborg University
Learning methods are challenged when there is not enough labelled data. It gets worse when the existing learning data have different distributions in different domains. To deal with such situations, deep unsupervised domain adaptation techniques have newly been widely used. This study surveys such domain adaptation methods that have been used for classification tasks in computer vision. The survey includes the very recent papers on this topic that have not been included in the previous surveys and introduces a taxonomy by grouping methods published on unsupervised domain adaptation into five groups of discrepancy-, adversarial-, reconstruction-, representation-, and attention-based methods.
Iaith wreiddiolAnadnabyddus
Tudalennau (o-i)3283 – 3299
CyfnodolynIET Image Processing
Cyfrol14
Rhif y cyfnodolyn14
Dyddiad ar-lein cynnar3 Tach 2020
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 1 Rhag 2020
Cyhoeddwyd yn allanolIe
Gweld graff cysylltiadau