StandardStandard

Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine. / Mania, Przemysław; Kupfernagel, Carlo; Curling, Simon.
Yn: Forests, Cyfrol 15, Rhif 6, 21.05.2024.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

APA

CBE

MLA

VancouverVancouver

Author

RIS

TY - JOUR

T1 - Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine

AU - Mania, Przemysław

AU - Kupfernagel, Carlo

AU - Curling, Simon

PY - 2024/5/21

Y1 - 2024/5/21

N2 - The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With delignification prior to densification, one achieves higher compression ratios and better mechanical properties compared to densification without pre-treatment. The reactivity of syringyl (dominant in hardwoods) and guaiacyl (dominant in softwoods) lignin towards delignification is different. The influences of this difference on the delignification and densification of softwoods and hardwoods need to be investigated. This study aimed to densify wood after delignification and investigate how variations in chemical composition between coniferous and deciduous species affect the densification process. Scots pine and Eurasian aspen specimens with a similar initial density were investigated to study the influence of the different lignin chemistry in softwoods and hardwoods on the densification process. Both timbers were delignified with sodium sulphite and sodium hydroxide and subsequently densified. While the delignification was twice as efficient in aspen than in pine, the compression ratios were almost identical in both species. The Brinell hardness and compressive strength showed a more significant increase in aspen than in Scots pine; however, one exception was the compressive strength in a radial direction, which increased more effectively in Scots pine. Scanning electron microscopy (SEM) revealed the microstructure of densified aspen and Scots pine, showing the crushing and collapse of the cells.

AB - The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With delignification prior to densification, one achieves higher compression ratios and better mechanical properties compared to densification without pre-treatment. The reactivity of syringyl (dominant in hardwoods) and guaiacyl (dominant in softwoods) lignin towards delignification is different. The influences of this difference on the delignification and densification of softwoods and hardwoods need to be investigated. This study aimed to densify wood after delignification and investigate how variations in chemical composition between coniferous and deciduous species affect the densification process. Scots pine and Eurasian aspen specimens with a similar initial density were investigated to study the influence of the different lignin chemistry in softwoods and hardwoods on the densification process. Both timbers were delignified with sodium sulphite and sodium hydroxide and subsequently densified. While the delignification was twice as efficient in aspen than in pine, the compression ratios were almost identical in both species. The Brinell hardness and compressive strength showed a more significant increase in aspen than in Scots pine; however, one exception was the compressive strength in a radial direction, which increased more effectively in Scots pine. Scanning electron microscopy (SEM) revealed the microstructure of densified aspen and Scots pine, showing the crushing and collapse of the cells.

KW - delignification

KW - densification

KW - guaiacyl

KW - hardness

KW - syringyl

KW - wood

U2 - 10.3390/f15060892

DO - 10.3390/f15060892

M3 - Article

VL - 15

JO - Forests

JF - Forests

SN - 1999-4907

IS - 6

ER -