Engineering a short, aldolase based pathway for (R)-1,3-butanediol production in Escherichia coli
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Metabolic Engineering, Cyfrol 48, 01.07.2018, t. 13-24.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Engineering a short, aldolase based pathway for (R)-1,3-butanediol production in Escherichia coli
AU - Nemr, Kayla
AU - Muller, Jonas
AU - Joo, Jeong Chan
AU - Gawand, Pratish
AU - Cjoudhary, Ruhi
AU - Mendonca, Burton
AU - Lu, Shuyi
AU - Yu, Xiuyan
AU - Yakunin, Alexander
AU - Mahadevan, Radhakrishnan
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Microbial processes can produce a wide range of compounds; however, producing complex and long chain hydrocarbons remains a challenge. Aldol condensation offers a direct route to synthesize these challenging chemistries and can be catalyzed by microbes using aldolases. Deoxyribose-5-phosphate aldolase (DERA) condensesaldehydes and/or ketones to beta-hydroxyaldehydes, which can be further converted to value-added chemicals such as a precursor to cholesterol-lowering drugs. Here, we implement a short, aldolase-based pathway in Escherichia coli to produce (R)-1,3-BDO from glucose, an essential component of pharmaceutical products and cosmetics. First, we expressed a three step heterologous pathway from pyruvate to produce 0.3 g/L of (R)-1,3-BDO with a yield of 11.2 mg/g of glucose in wild-type E. coli K12 MG1655. We used a systems metabolic engineering approach to improve (R)-1,3-BDO titer and yield by: 1) identifying and reducing major by-products: ethanol, acetoin, and 2,3-butanediol; 2) increasing pathway flux through DERA to reduce accumulation of toxic acetaldehyde. We then implemented a two stage fermentation process to improve (R)-1,3-BDO titer by 8-fold to 2.4 g/L and yield by 5-fold to 56 mg/g of glucose (11% of maximum theoretical yield), by controlling pH to 7 and higher dissolved oxygen level. Furthermore, this study highlights the potential of the aldolase chemistry to synthesize diverse products directly from renewable resources in microbes.
AB - Microbial processes can produce a wide range of compounds; however, producing complex and long chain hydrocarbons remains a challenge. Aldol condensation offers a direct route to synthesize these challenging chemistries and can be catalyzed by microbes using aldolases. Deoxyribose-5-phosphate aldolase (DERA) condensesaldehydes and/or ketones to beta-hydroxyaldehydes, which can be further converted to value-added chemicals such as a precursor to cholesterol-lowering drugs. Here, we implement a short, aldolase-based pathway in Escherichia coli to produce (R)-1,3-BDO from glucose, an essential component of pharmaceutical products and cosmetics. First, we expressed a three step heterologous pathway from pyruvate to produce 0.3 g/L of (R)-1,3-BDO with a yield of 11.2 mg/g of glucose in wild-type E. coli K12 MG1655. We used a systems metabolic engineering approach to improve (R)-1,3-BDO titer and yield by: 1) identifying and reducing major by-products: ethanol, acetoin, and 2,3-butanediol; 2) increasing pathway flux through DERA to reduce accumulation of toxic acetaldehyde. We then implemented a two stage fermentation process to improve (R)-1,3-BDO titer by 8-fold to 2.4 g/L and yield by 5-fold to 56 mg/g of glucose (11% of maximum theoretical yield), by controlling pH to 7 and higher dissolved oxygen level. Furthermore, this study highlights the potential of the aldolase chemistry to synthesize diverse products directly from renewable resources in microbes.
U2 - 10.1016/j.ymben.2018.04.013
DO - 10.1016/j.ymben.2018.04.013
M3 - Article
VL - 48
SP - 13
EP - 24
JO - Metabolic Engineering
JF - Metabolic Engineering
ER -