Enhancing photovoltaic performance of perovskite solar cells utilizing germanium nanoparticles
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Solar Energy, Cyfrol 188, 01.08.2019, t. 839-848.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Enhancing photovoltaic performance of perovskite solar cells utilizing germanium nanoparticles
AU - Zhang, Chenxi
AU - Li, Zaifeng
AU - Deng, Xueshuang
AU - Yan, Bing
AU - Wang, Zengbo
AU - Chen, Xiaohong
AU - Sun, Zhuo
AU - Huang, Sumei
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Morphological and crystalline control over hybrid organic-inorganic perovskite films is pivotal for efficient photovoltaic (PV) performance devices. Yet, this remains very challenging for solution processed perovskite solar cells (PVSCs), especially mesoscopic PVSCs, due to the complicated crystallization kinetics of hybrid semiconductor materials within dynamic spin-coating and post annealing. In this work, colloidal Ge nanoparticles (NPs) were added onto a mesoporous TiO2 (m-TiO2) electron transporting layer (ETL) to regulate perovskite crystal growth. Systematic investigation and optimization disclose that incorporation of an appropriate ratio of Ge NPs onto the m-TiO2 ETL can simultaneously increase the size of the CH3NH3PbI3 crystals, decrease the number of the grain boundaries and promote the interfacial properties of perovskite/m-TiO2. The related mechanisms are clarified through detailed morphology and crystal structure analyses. The electron mobility of the perovskite absorber, determined using the space charge limited current (SCLC) method, was increased by over 5 times when an optimized amount of Ge NPs were employed. Average power conversion efficiency (PCE) of 18.59% was achieved from 16 cells and the best PCE of 19.6% was attained via the addition of the optimized amount of Ge NPs. We study the fundamentals of optics and physics behind the PVSC device based on the high refractive index Ge NPs. This work offers an innovative scenario to enhance the performance of perovskite based optoelectronics by employing optically stable, chemically inert, low-cost and green semiconductor NPs.
AB - Morphological and crystalline control over hybrid organic-inorganic perovskite films is pivotal for efficient photovoltaic (PV) performance devices. Yet, this remains very challenging for solution processed perovskite solar cells (PVSCs), especially mesoscopic PVSCs, due to the complicated crystallization kinetics of hybrid semiconductor materials within dynamic spin-coating and post annealing. In this work, colloidal Ge nanoparticles (NPs) were added onto a mesoporous TiO2 (m-TiO2) electron transporting layer (ETL) to regulate perovskite crystal growth. Systematic investigation and optimization disclose that incorporation of an appropriate ratio of Ge NPs onto the m-TiO2 ETL can simultaneously increase the size of the CH3NH3PbI3 crystals, decrease the number of the grain boundaries and promote the interfacial properties of perovskite/m-TiO2. The related mechanisms are clarified through detailed morphology and crystal structure analyses. The electron mobility of the perovskite absorber, determined using the space charge limited current (SCLC) method, was increased by over 5 times when an optimized amount of Ge NPs were employed. Average power conversion efficiency (PCE) of 18.59% was achieved from 16 cells and the best PCE of 19.6% was attained via the addition of the optimized amount of Ge NPs. We study the fundamentals of optics and physics behind the PVSC device based on the high refractive index Ge NPs. This work offers an innovative scenario to enhance the performance of perovskite based optoelectronics by employing optically stable, chemically inert, low-cost and green semiconductor NPs.
KW - Crystallinity Germanium nanoparticle
KW - Mie scattering
KW - Organometal halide perovskite
KW - Solar cells
U2 - 10.1016/j.solener.2019.06.069
DO - 10.1016/j.solener.2019.06.069
M3 - Article
VL - 188
SP - 839
EP - 848
JO - Solar Energy
JF - Solar Energy
SN - 0038-092X
ER -