Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • Ramona Marasco
    King Abdullah University of Science and Technology, Saudi Arabia
  • Marco Fusi
    King Abdullah University of Science and Technology, Saudi Arabia
  • Cristina Coscolín
    Institute of Catalysis, Madrid, Spain
  • Alan Borozzi
    King Abdullah University of Science and Technology, Saudi Arabia
  • David Almendral
    Institute of Catalysis, Madrid, Spain
  • Rafael Bargiela
  • Christina Gohlke neé Nutschel
    Forschungszentrum Jülich GmbH
  • Jonas Dittrich
    Heinrich-Heine-Universität , Dusseldorf
  • Holger Gohlke
    Forschungszentrum Jülich GmbH
  • Ruth Matesanz
    Institute of Catalysis, Madrid, Spain
  • Sergio Sanchez-Carrillo
    Institute of Catalysis, Madrid, Spain
  • Francesca Mapelli
    University of Milan
  • Tatyana Chernikova
  • Peter Golyshin
  • Manuel Ferrer
    Institute of Catalysis, Madrid, Spain
  • Daniele Daffonchio
    King Abdullah University of Science and Technology, Saudi Arabia
Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.

Allweddeiriau

Iaith wreiddiolSaesneg
Rhif yr erthygl1045
CyfnodolynNature Communications
Cyfrol14
Rhif y cyfnodolyn1
Dyddiad ar-lein cynnar24 Chwef 2023
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 24 Chwef 2023

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau