Extinction and recolonization of coastal megafauna following human arrival in New Zealand.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

StandardStandard

Extinction and recolonization of coastal megafauna following human arrival in New Zealand. / Collins, C.J.; Rawlence, N.J.; Prost, S. et al.
Yn: Proceedings of the Royal Society B., Cyfrol 281, Rhif 1786, 14.05.2014.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

Collins, CJ, Rawlence, NJ, Prost, S, Anderson, CN, Knapp, M, Scofield, RP, Robertson, BC, Smith, I, Matisoo-Smith, EA, Chilvers, BL & Waters, JM 2014, 'Extinction and recolonization of coastal megafauna following human arrival in New Zealand.', Proceedings of the Royal Society B., cyfrol. 281, rhif 1786. https://doi.org/10.1098/rspb.2014.0097

APA

Collins, C. J., Rawlence, N. J., Prost, S., Anderson, C. N., Knapp, M., Scofield, R. P., Robertson, B. C., Smith, I., Matisoo-Smith, E. A., Chilvers, B. L., & Waters, J. M. (2014). Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proceedings of the Royal Society B., 281(1786). https://doi.org/10.1098/rspb.2014.0097

CBE

Collins CJ, Rawlence NJ, Prost S, Anderson CN, Knapp M, Scofield RP, Robertson BC, Smith I, Matisoo-Smith EA, Chilvers BL, et al. 2014. Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proceedings of the Royal Society B. 281(1786). https://doi.org/10.1098/rspb.2014.0097

MLA

VancouverVancouver

Collins CJ, Rawlence NJ, Prost S, Anderson CN, Knapp M, Scofield RP et al. Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proceedings of the Royal Society B. 2014 Mai 14;281(1786). doi: 10.1098/rspb.2014.0097

Author

Collins, C.J. ; Rawlence, N.J. ; Prost, S. et al. / Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Yn: Proceedings of the Royal Society B. 2014 ; Cyfrol 281, Rhif 1786.

RIS

TY - JOUR

T1 - Extinction and recolonization of coastal megafauna following human arrival in New Zealand.

AU - Collins, C.J.

AU - Rawlence, N.J.

AU - Prost, S.

AU - Anderson, C.N.

AU - Knapp, M.

AU - Scofield, R.P.

AU - Robertson, B.C.

AU - Smith, I.

AU - Matisoo-Smith, E.A.

AU - Chilvers, B.L.

AU - Waters, J.M.

PY - 2014/5/14

Y1 - 2014/5/14

N2 - Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction.

AB - Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction.

U2 - 10.1098/rspb.2014.0097

DO - 10.1098/rspb.2014.0097

M3 - Article

VL - 281

JO - Proceedings of the Royal Society B.

JF - Proceedings of the Royal Society B.

SN - 0962-8452

IS - 1786

ER -