StandardStandard

Factors affecting byssus attachment in juvenile scallops, Pecten maximus (L.). / Galley, Thomas; Beaumont, Andrew; Le Vay, Lewis; King, Jonathan.

Yn: Aquaculture, Cyfrol 528, 735504, 15.11.2020.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygl

HarvardHarvard

APA

CBE

MLA

VancouverVancouver

Author

Galley, Thomas ; Beaumont, Andrew ; Le Vay, Lewis ; King, Jonathan. / Factors affecting byssus attachment in juvenile scallops, Pecten maximus (L.). Yn: Aquaculture. 2020 ; Cyfrol 528.

RIS

TY - JOUR

T1 - Factors affecting byssus attachment in juvenile scallops, Pecten maximus (L.)

AU - Galley, Thomas

AU - Beaumont, Andrew

AU - Le Vay, Lewis

AU - King, Jonathan

PY - 2020/11/15

Y1 - 2020/11/15

N2 - Environmental and husbandry factors play key roles in the control of byssus attachment and detachment in many bivalve species. Identifying and understanding the impact of influential factors is essential for the management of post-settlement hatchery reared juveniles in species, such as the scallop Pecten maximus. We assessed the impact of substrate type and condition, and attachment period on attachment of juvenile scallops between 1.9 and 5.9 mm in shell height. Comparison of a variety of substrates showed that scallop juveniles have a preference for textured hard surfaces, with mean attachment up to 75.6 ± 14.4% after 24 h on riven slate in static conditions. Attachment could be significantly increased by preconditioning substrates in flow-through tanks of unfiltered seawater and by having undisturbed attachment periods longer than 1 h. The effect of substrate type and substrate condition on retention of seed was assessed in a flume. For all substrates, retention decreased with increasing water velocity. However, of the substrates examined (wool, nylon and slate), retention was greatest on the riven slate, with attachment up to 100% at water flow of 12.6 ± 0.2 cm s−1, although this was not statistically greater than on wool or nylon. Across all substrates preconditioning by immersion in seawater for two weeks significantly compromised juvenile retention at higher water velocities. Based on these findings, recommended parameters for maximising juvenile P. maximus attachment and retention in water velocities up to 12.6 ± 0.2 cm s−1 include utilising a riven slate type hard substrate, preconditioned for 1 week, with juveniles allowed to attach for 24 h.

AB - Environmental and husbandry factors play key roles in the control of byssus attachment and detachment in many bivalve species. Identifying and understanding the impact of influential factors is essential for the management of post-settlement hatchery reared juveniles in species, such as the scallop Pecten maximus. We assessed the impact of substrate type and condition, and attachment period on attachment of juvenile scallops between 1.9 and 5.9 mm in shell height. Comparison of a variety of substrates showed that scallop juveniles have a preference for textured hard surfaces, with mean attachment up to 75.6 ± 14.4% after 24 h on riven slate in static conditions. Attachment could be significantly increased by preconditioning substrates in flow-through tanks of unfiltered seawater and by having undisturbed attachment periods longer than 1 h. The effect of substrate type and substrate condition on retention of seed was assessed in a flume. For all substrates, retention decreased with increasing water velocity. However, of the substrates examined (wool, nylon and slate), retention was greatest on the riven slate, with attachment up to 100% at water flow of 12.6 ± 0.2 cm s−1, although this was not statistically greater than on wool or nylon. Across all substrates preconditioning by immersion in seawater for two weeks significantly compromised juvenile retention at higher water velocities. Based on these findings, recommended parameters for maximising juvenile P. maximus attachment and retention in water velocities up to 12.6 ± 0.2 cm s−1 include utilising a riven slate type hard substrate, preconditioned for 1 week, with juveniles allowed to attach for 24 h.

KW - Attachment

KW - Pecten maximus

KW - Water velocity

KW - Substrate

U2 - 10.1016/j.aquaculture.2020.735504

DO - 10.1016/j.aquaculture.2020.735504

M3 - Article

VL - 528

JO - Aquaculture

JF - Aquaculture

SN - 0044-8486

M1 - 735504

ER -