First-principles study of lithium aluminosilicate glass scintillators
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Physical Chemistry Chemical Physics, Cyfrol 26, Rhif 7, 30.01.2024, t. 6138-6147.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - First-principles study of lithium aluminosilicate glass scintillators
AU - Ghardi, EM
AU - Scrimshire, Alex
AU - Smith, Robin
AU - Bingham, PA
AU - Middleburgh, SC
AU - Lee, WE
AU - Rushton, MJD
PY - 2024/1/30
Y1 - 2024/1/30
N2 - Radiation sensors are an important enabling technology in several fields, such as medicine, scientific research, energy, defence, meteorology, and homeland security. Glass-based scintillators have been in use for more than 50 years and offer many benefits, including their ability to respond to different types of radiation, and to be readily formed into various shapes. There is, however, the prospect to develop new and improved glass scintillators, with low self-absorption, low refractive indices, and high radiative recombination rates. To investigate the factors limiting the improvement of glass scintillator properties, this work provides insight from atomic scale simulations of the cerium-doped lithium aluminosilicate (SiO2–Al2O3–MgO–Li2O–Ce2O3) glass scintillator system. Three glass compositions were studied using molecular dynamics and density functional theory to investigate the effect of the ratio Image ID:d3cp05576k-t1.gif (with RAl/M = [0.1, 0.8 and 1.2]) on the structural and electronic properties. For a ratio RAl/M > 1, it has been shown that glasses with increased polymerization allow for more effective incorporation of Ce3+ cations. The structural analysis also showed that the bond order of Al–O can be affected in the presence of a lithium-rich environment. Electronic density of states and Bader charge analysis indicate a decline in the population of localized trapping states with increasing RAl/M. This suggests a higher probability of radiative recombination which can increase the photon yield of these scintillators. These findings provide valuable guidance for optimizing Li-glasses in neutron detection systems by highlighting the intricate challenges.
AB - Radiation sensors are an important enabling technology in several fields, such as medicine, scientific research, energy, defence, meteorology, and homeland security. Glass-based scintillators have been in use for more than 50 years and offer many benefits, including their ability to respond to different types of radiation, and to be readily formed into various shapes. There is, however, the prospect to develop new and improved glass scintillators, with low self-absorption, low refractive indices, and high radiative recombination rates. To investigate the factors limiting the improvement of glass scintillator properties, this work provides insight from atomic scale simulations of the cerium-doped lithium aluminosilicate (SiO2–Al2O3–MgO–Li2O–Ce2O3) glass scintillator system. Three glass compositions were studied using molecular dynamics and density functional theory to investigate the effect of the ratio Image ID:d3cp05576k-t1.gif (with RAl/M = [0.1, 0.8 and 1.2]) on the structural and electronic properties. For a ratio RAl/M > 1, it has been shown that glasses with increased polymerization allow for more effective incorporation of Ce3+ cations. The structural analysis also showed that the bond order of Al–O can be affected in the presence of a lithium-rich environment. Electronic density of states and Bader charge analysis indicate a decline in the population of localized trapping states with increasing RAl/M. This suggests a higher probability of radiative recombination which can increase the photon yield of these scintillators. These findings provide valuable guidance for optimizing Li-glasses in neutron detection systems by highlighting the intricate challenges.
U2 - 10.1039/D3CP05576K
DO - 10.1039/D3CP05576K
M3 - Article
VL - 26
SP - 6138
EP - 6147
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
IS - 7
ER -