Freeze-thaw and dry-wet events reduce microbial extracellular enzyme activity, but not organic matter turnover in an agricultural grassland soil
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Applied Soil Ecology, Cyfrol 144, 12.2019, t. 196-199.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Freeze-thaw and dry-wet events reduce microbial extracellular enzyme activity, but not organic matter turnover in an agricultural grassland soil
AU - Miura, Maki
AU - Jones, Timothy G.
AU - Hill, Paul W.
AU - Jones, Davey L.
PY - 2019/12
Y1 - 2019/12
N2 - Soils in temperate agroecosystems are frequently exposed to extremes of moisture and temperature during which time soil functioning may be negatively affected. The aim of this study was to directly compare the effects of a single dry-wet or freeze-thaw (−5 °C or −20 °C) cycle on extracellular enzyme activity and soil organic matter turnover. We measured the activity of six enzymes before and after imposing the freeze-thaw or dry-rewet events. Our results showed that drying had a much greater impact on total enzyme activity than a −20 °C freezing event (38 vs. 10% reduction, respectively), while freezing at −5 °C had no appreciable effect. Enzyme activity recovered back to control levels relatively quickly which we ascribe to de novo exoenzyme production (within 3 d for the −20 °C freeze-thaw treatment and 14 d for the dry-wet treatment). We added 14C-labelled plant residues to the soil prior to imposing the same thermal or moisture stress events. Monitoring residue decomposition before and after imposing the treatments indicated that none of the stress regimes greatly affected organic matter turnover rates. Our results did reveal, however, a pulse of 14CO2 which was produced during the drying and freezing events themselves. We ascribe this to a shift in microbial metabolism and the production of stress avoidance metabolites (e.g. osmo- and cryo-protectants, membrane lipids). Our work highlights that extreme weather events may affect exoenzyme activity, however, these responses are transitory and are unlikely to greatly affect soil organic matter cycling unless they occur at high frequency.
AB - Soils in temperate agroecosystems are frequently exposed to extremes of moisture and temperature during which time soil functioning may be negatively affected. The aim of this study was to directly compare the effects of a single dry-wet or freeze-thaw (−5 °C or −20 °C) cycle on extracellular enzyme activity and soil organic matter turnover. We measured the activity of six enzymes before and after imposing the freeze-thaw or dry-rewet events. Our results showed that drying had a much greater impact on total enzyme activity than a −20 °C freezing event (38 vs. 10% reduction, respectively), while freezing at −5 °C had no appreciable effect. Enzyme activity recovered back to control levels relatively quickly which we ascribe to de novo exoenzyme production (within 3 d for the −20 °C freeze-thaw treatment and 14 d for the dry-wet treatment). We added 14C-labelled plant residues to the soil prior to imposing the same thermal or moisture stress events. Monitoring residue decomposition before and after imposing the treatments indicated that none of the stress regimes greatly affected organic matter turnover rates. Our results did reveal, however, a pulse of 14CO2 which was produced during the drying and freezing events themselves. We ascribe this to a shift in microbial metabolism and the production of stress avoidance metabolites (e.g. osmo- and cryo-protectants, membrane lipids). Our work highlights that extreme weather events may affect exoenzyme activity, however, these responses are transitory and are unlikely to greatly affect soil organic matter cycling unless they occur at high frequency.
KW - Agricultural grassland
KW - Carbon dynamics
KW - Enzyme production
KW - Microbial function
KW - Phosphatase
U2 - 10.1016/j.apsoil.2019.08.002
DO - 10.1016/j.apsoil.2019.08.002
M3 - Article
VL - 144
SP - 196
EP - 199
JO - Applied Soil Ecology
JF - Applied Soil Ecology
SN - 0929-1393
ER -