Hierarchical Vs Centroid-Based Constraint Clustering for Animal Video Data

Allbwn ymchwil: Cyfraniad at gynhadleddPapuradolygiad gan gymheiriaid

The identification of animals from video footage is
an important ecological pursuit. It presents a labour-intensive
task, requiring experts to invest considerable time analysing video
recordings. While identifying humans from video is a mainstream
research quest, much less has been done for recognising animals’
identities. This paper explores and contrasts the effectiveness
of hierarchical and centroid-based constraint clustering methods
across five manually annotated video datasets containing animals.
We aim to determine the most suitable methodology for integrat-
ing into a fully autonomous pipeline for animal re-identification.
Our experimental findings indicate that, contrary to expectation,
online hierarchical constraint clustering surpasses centroid-based
constrained clustering.

Allweddeiriau

Iaith wreiddiolSaesneg
Nifer y tudalennau6
StatwsCyhoeddwyd - 29 Awst 2024
Digwyddiad2024 IEEE 12th International Conference on Intelligent Systems (IS) - Varna, Bwlgaria
Hyd: 29 Awst 202431 Awst 2024
http://10.1109/IS61756.2024.10705267

Cynhadledd

Cynhadledd2024 IEEE 12th International Conference on Intelligent Systems (IS)
Gwlad/TiriogaethBwlgaria
DinasVarna
Cyfnod29/08/2431/08/24
Cyfeiriad rhyngrwyd
Gweld graff cysylltiadau