Host–microbiota–insect interactions drive emergent virulence in a complex tree disease
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Proceedings of the Royal Society B: Biological Sciences, Cyfrol 287, Rhif 1933, 20200956, 26.08.2020.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Host–microbiota–insect interactions drive emergent virulence in a complex tree disease
AU - Doonan, James
AU - Broberg, Martin
AU - Denman, Sandra
AU - McDonald, James
PY - 2020/8/26
Y1 - 2020/8/26
N2 - Forest declines caused by climate disturbance, insect pests and microbial pathogens threaten the global landscape, and tree diseases are increasingly attributed to the emergent properties of complex ecological interactions between the host, microbiota and insects. To address this hypothesis, we combined reductionist approaches (single and polyspecies bacterial cultures) with emergentist approaches (bacterial inoculations in an oak infection model with the addition of insect larvae) to unravel the gene expression landscape and symptom severity of host–microbiota–insect interactions in the acute oak decline (AOD) pathosystem. AOD is a complex decline disease characterized by predisposing abiotic factors, inner bark lesions driven by a bacterial pathobiome, and larval galleries of the bark-boring beetle Agrilus biguttatus. We identified expression of key pathogenicity genes in Brenneria goodwinii, the dominant member of the AOD pathobiome, tissue-specific gene expression profiles, cooperation with other bacterial pathobiome members in sugar catabolism, and demonstrated amplification of pathogenic gene expression in the presence of Agrilus larvae. This study highlights the emergent properties of complex host–pathobiota–insect interactions that underlie the pathology of diseases that threaten global forest biomes.
AB - Forest declines caused by climate disturbance, insect pests and microbial pathogens threaten the global landscape, and tree diseases are increasingly attributed to the emergent properties of complex ecological interactions between the host, microbiota and insects. To address this hypothesis, we combined reductionist approaches (single and polyspecies bacterial cultures) with emergentist approaches (bacterial inoculations in an oak infection model with the addition of insect larvae) to unravel the gene expression landscape and symptom severity of host–microbiota–insect interactions in the acute oak decline (AOD) pathosystem. AOD is a complex decline disease characterized by predisposing abiotic factors, inner bark lesions driven by a bacterial pathobiome, and larval galleries of the bark-boring beetle Agrilus biguttatus. We identified expression of key pathogenicity genes in Brenneria goodwinii, the dominant member of the AOD pathobiome, tissue-specific gene expression profiles, cooperation with other bacterial pathobiome members in sugar catabolism, and demonstrated amplification of pathogenic gene expression in the presence of Agrilus larvae. This study highlights the emergent properties of complex host–pathobiota–insect interactions that underlie the pathology of diseases that threaten global forest biomes.
U2 - 10.1098/rspb.2020.0956
DO - 10.1098/rspb.2020.0956
M3 - Article
VL - 287
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
SN - 0962-8452
IS - 1933
M1 - 20200956
ER -