Innovative Use of Depth Data to Estimate Energy Intake and Expenditure in Adélie Penguins

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

  • jeb249201

    Llawysgrif awdur wedi’i dderbyn, 3.4 MB, dogfen-PDF

    Embargo yn dod i ben: 4/12/25

Dangosydd eitem ddigidol (DOI)

  • Benjamin Dupuis
    Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
  • Akiko Kato
    Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
  • Olivia Hicks
  • Danuta M. Wisniewska
    Sound Communication and Behavior Group, Department of Biology, University of Southern Denmark, Odense M, Denmark Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
  • Coline Marciau
    Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, FranceInstitute For Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
  • Frederic Angelier
    Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
  • Yan Ropert-Coudert
    Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
  • Marianna Chimienti
    Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
Energy governs species’ life histories and pace of living, requiring individuals to make trade-offs. However, measuring energetic parameters in the wild is challenging, often resulting in data collected from heterogeneous sources. This complicates comprehensive analysis and hampers transferability within and across case studies. We present a novel framework, combining information obtained from eco-physiology and biologging techniques, to estimate both energy expended and acquired on 48 Adélie penguins (Pygoscelis adeliae) during the chick-rearing stage. We employ the machine learning algorithm random forest (RF) to predict accelerometry-derived metrics for feeding behaviour using depth data (our proxy for energy acquisition). We also build a time-activity model calibrated with doubly labelled water data to estimate energy expenditure. Using depth-derived time spent diving and amount of vertical movement in the subsurface phase, we accurately predict energy expenditure (R² = 0.68, RMSE = 344.67). Movement metrics derived from the RF algorithm deployed on depth data were able to accurately (accuracy = 0.82) detect the same feeding behaviour predicted from accelerometry. The RF predicted accelerometry-estimated time spent feeding more accurately (R² = 0.81) compared to historical proxies like number of undulations (R² = 0.51) or dive bottom duration (R² = 0.31). The proposed framework is accurate, reliable, and simple to implement on data from biologging technology widely-used on marine species. It enables coupling energy intake and expenditure, which is crucial to further assess individual trade-offs. Our work allows us to revisit historical data, to study how long-term environmental changes affect animals’ energetics.
Iaith wreiddiolSaesneg
Rhif yr erthygljeb249201
CyfnodolynJournal of Experimental Biology
Cyfrol227
Rhif y cyfnodolyn23
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 4 Rhag 2024
Gweld graff cysylltiadau