Intralake Heterogeneity of Thermal Responses to Climate Change: A Study of Large Northern Hemisphere Lakes
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Journal of Geophysical Research : Atmospheres, Cyfrol 123, Rhif 6, 27.03.2018, t. 3087-3098.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Intralake Heterogeneity of Thermal Responses to Climate Change: A Study of Large Northern Hemisphere Lakes
AU - Woolway, R. Iestyn
AU - Merchant, Christopher J.
PY - 2018/3/27
Y1 - 2018/3/27
N2 - Lake surface water temperature (LSWT) measurements from various sources illustrate that lakes are warming in response to climate change. Most previous studies of geographical distributions of lake warming have tended to utilize data with limited spatial resolution of LSWTs, including single-point time series. Spatially resolved LSWT time series are now available from satellite observations, and some studies have investigated previously the intralake warming patterns in specific lakes (e.g., North American Great Lakes). However, across-lake comparisons of intralake warming differences have not yet been investigated at a large, across-continental scale, thus limiting our understanding of how intralake warming patterns differ more broadly. In this study, we analyze up to 20 years of satellite data from 19 lakes situated across the Northern Hemisphere, to investigate how LSWT changes vary across different lake surfaces. We find considerable intralake variability in warming trends across many lakes. The deepest areas of large lakes are characterized by a later onset of thermal stratification, a shorter stratified warming season and exhibit longer correlation timescales of LSWT anomalies. We show that deep areas of large lakes across the Northern Hemisphere as a result tend to display higher rates of warming of summer LSWT, arising from a greater temporal persistence in deep areas of the temperature anomalies associated with an earlier onset of thermal stratification. Utilization of single-point LSWT trends to represent changes in large lakes therefore suppresses important aspects of lake responses to climate change, whereas spatially resolved LSWT measurements can be exploited to provide more comprehensive understanding.
AB - Lake surface water temperature (LSWT) measurements from various sources illustrate that lakes are warming in response to climate change. Most previous studies of geographical distributions of lake warming have tended to utilize data with limited spatial resolution of LSWTs, including single-point time series. Spatially resolved LSWT time series are now available from satellite observations, and some studies have investigated previously the intralake warming patterns in specific lakes (e.g., North American Great Lakes). However, across-lake comparisons of intralake warming differences have not yet been investigated at a large, across-continental scale, thus limiting our understanding of how intralake warming patterns differ more broadly. In this study, we analyze up to 20 years of satellite data from 19 lakes situated across the Northern Hemisphere, to investigate how LSWT changes vary across different lake surfaces. We find considerable intralake variability in warming trends across many lakes. The deepest areas of large lakes are characterized by a later onset of thermal stratification, a shorter stratified warming season and exhibit longer correlation timescales of LSWT anomalies. We show that deep areas of large lakes across the Northern Hemisphere as a result tend to display higher rates of warming of summer LSWT, arising from a greater temporal persistence in deep areas of the temperature anomalies associated with an earlier onset of thermal stratification. Utilization of single-point LSWT trends to represent changes in large lakes therefore suppresses important aspects of lake responses to climate change, whereas spatially resolved LSWT measurements can be exploited to provide more comprehensive understanding.
KW - Lake
KW - Climate change
KW - Warming
U2 - 10.1002/2017JD027661
DO - 10.1002/2017JD027661
M3 - Article
VL - 123
SP - 3087
EP - 3098
JO - Journal of Geophysical Research : Atmospheres
JF - Journal of Geophysical Research : Atmospheres
SN - 2169-897X
IS - 6
ER -