Local-scale projections of coral reef futures and implications of the Paris Agreement
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Scientific Reports, Cyfrol 6, 39666, 12.2016.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Local-scale projections of coral reef futures and implications of the Paris Agreement
AU - van Hooidonk, Ruben
AU - Maynard, Jeffrey A.
AU - Tamelander, Jerker
AU - Gove, Jamison M.
AU - Ahmadia, Gabby N.
AU - Raymundo, Laurie
AU - Williams, Gareth
AU - Heron, Scott F.
AU - Planes, Serge
PY - 2016/12
Y1 - 2016/12
N2 - Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.
AB - Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.
U2 - 10.1038/srep39666
DO - 10.1038/srep39666
M3 - Article
VL - 6
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
M1 - 39666
ER -