Lyapunov functions for generalized discrete-time multivariable Popov criterion

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

StandardStandard

Lyapunov functions for generalized discrete-time multivariable Popov criterion. / Ahmad, N.S.; Heath, W.P.; Li, G.
Yn: IFAC Proceedings Volumes (IFAC-PapersOnline), Cyfrol 44, Rhif 1, 25.04.2016, t. 3392-3397.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

Ahmad, NS, Heath, WP & Li, G 2016, 'Lyapunov functions for generalized discrete-time multivariable Popov criterion', IFAC Proceedings Volumes (IFAC-PapersOnline), cyfrol. 44, rhif 1, tt. 3392-3397. https://doi.org/10.3182/20110828-6-IT-1002.00402

APA

Ahmad, N. S., Heath, W. P., & Li, G. (2016). Lyapunov functions for generalized discrete-time multivariable Popov criterion. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1), 3392-3397. https://doi.org/10.3182/20110828-6-IT-1002.00402

CBE

MLA

VancouverVancouver

Ahmad NS, Heath WP, Li G. Lyapunov functions for generalized discrete-time multivariable Popov criterion. IFAC Proceedings Volumes (IFAC-PapersOnline). 2016 Ebr 25;44(1):3392-3397. Epub 2011 Ion 1. doi: 10.3182/20110828-6-IT-1002.00402

Author

Ahmad, N.S. ; Heath, W.P. ; Li, G. / Lyapunov functions for generalized discrete-time multivariable Popov criterion. Yn: IFAC Proceedings Volumes (IFAC-PapersOnline). 2016 ; Cyfrol 44, Rhif 1. tt. 3392-3397.

RIS

TY - JOUR

T1 - Lyapunov functions for generalized discrete-time multivariable Popov criterion

AU - Ahmad, N.S.

AU - Heath, W.P.

AU - Li, G.

PY - 2016/4/25

Y1 - 2016/4/25

N2 - This paper shows the existence of Lur'e-Postkinov Lyapunov functions for the generalized multivariable discrete-time Popov criterion. The nonlinearities in the Lur'e system considered here are monotonic, sector- and slope-restricted. We discuss the cases where the nonlinearities are diagonal and non-diagonal. Our derivation is based on the discrete-time Kalman-Yakubovich-Popov (KYP) lemma and the S-Procedure, and results in Linear Matrix Inequality (LMI) conditions which can be solved using convex optimization methods.

AB - This paper shows the existence of Lur'e-Postkinov Lyapunov functions for the generalized multivariable discrete-time Popov criterion. The nonlinearities in the Lur'e system considered here are monotonic, sector- and slope-restricted. We discuss the cases where the nonlinearities are diagonal and non-diagonal. Our derivation is based on the discrete-time Kalman-Yakubovich-Popov (KYP) lemma and the S-Procedure, and results in Linear Matrix Inequality (LMI) conditions which can be solved using convex optimization methods.

U2 - 10.3182/20110828-6-IT-1002.00402

DO - 10.3182/20110828-6-IT-1002.00402

M3 - Erthygl

VL - 44

SP - 3392

EP - 3397

JO - IFAC Proceedings Volumes (IFAC-PapersOnline)

JF - IFAC Proceedings Volumes (IFAC-PapersOnline)

IS - 1

ER -