Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Philosophical Transactions of The Royal Society B: Biological Sciences, Cyfrol 377, Rhif 1846, 20210025, 14.03.2022.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species
AU - Holman, Luke E.
AU - Parker-Nance, Shirley
AU - de Bruyn, Mark
AU - Creer, Simon
AU - Carvalho, Gary
AU - Rius, Marc
PY - 2022/3/14
Y1 - 2022/3/14
N2 - The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species' range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
AB - The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species' range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
KW - ascidians
KW - biodiversity
KW - environmental DNA
KW - non-native species
KW - range shifts
U2 - 10.1098/rstb.2021.0025
DO - 10.1098/rstb.2021.0025
M3 - Article
C2 - 35067092
VL - 377
JO - Philosophical Transactions of The Royal Society B: Biological Sciences
JF - Philosophical Transactions of The Royal Society B: Biological Sciences
SN - 0962-8436
IS - 1846
M1 - 20210025
ER -