MRI Gastric Images Processing using a Multiobjective Fly Algorithm
Allbwn ymchwil: Cyfraniad at gynhadledd › Papur › adolygiad gan gymheiriaid
Fersiynau electronig
Dogfennau
- PPSN___paper__Copy_
Llawysgrif awdur wedi’i dderbyn, 3.68 MB, dogfen-PDF
Trwydded: CC BY Dangos trwydded
When dealing with rare and sparse data, like the ones collected during a long and expensive experimental process, machine learning is used in a different perspective. In this context, optimisation-based approaches combined with user visualisation and interactions are sometimes the best way to cope with modelling issues. We present here an example related to an experimental project aiming at understanding the kinetics of gastric emptying using MRI images of the stomach of healthy volunteers. We show how a cooperation/co-evolution algorithm, the ``Fly Algorithm'', can be made multi-objective, and its output, a complex Pareto Front, analysed using interactive Information Visualization (InfoVis) and clustering.
Iaith wreiddiol | Saesneg |
---|---|
Statws | Cyhoeddwyd - 8 Medi 2018 |
Digwyddiad | Evolutionary Machine Learning - University of Coimbra, Coimbra, Portiwgal Hyd: 8 Medi 2018 → … http://ppsn2018.dei.uc.pt/index.php/workshops/ |
Gweithdy
Gweithdy | Evolutionary Machine Learning |
---|---|
Teitl cryno | EvoML |
Gwlad/Tiriogaeth | Portiwgal |
Dinas | Coimbra |
Cyfnod | 8/09/18 → … |
Cyfeiriad rhyngrwyd |
Cyfanswm lawlrlwytho
Nid oes data ar gael