Multi-biomarker approach for estimating population size in a national-scale wastewater-based epidemiology study
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Water research, Cyfrol 268, Rhif Pt A, 01.01.2025, t. 122527.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Multi-biomarker approach for estimating population size in a national-scale wastewater-based epidemiology study
AU - Kasprzyk-Hordern, Barbara
AU - Jagadeesan, Kishore
AU - Sims, Natalie
AU - Farkas, Kata
AU - Proctor, Kathryn
AU - Bagnall, John
AU - Robertson, Megan
AU - Jones, Davey L
AU - Wade, Matthew J
N1 - Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
PY - 2025/1/1
Y1 - 2025/1/1
N2 - This study identifies biochemical markers (BCIs) that can be used as population markers in wastewater-based epidemiology (WBE) and compares their estimates with other established population size estimation (PE) methods, including census data (PECEN). Several groups of BCIs (64 targets: genetic and chemical markers) were investigated in an intercity study, including 10 cities/towns within England equating to a population of ∼7 million people. Several selection criteria were applied to identify the best BCIs to provide robust estimation of population size at a catchment level: (1) excellent performance with analytical methods; (2) excellent fit of the linear regression model which indicates PE-driven BCI daily loads; (3) low temporal variability in usage; (4) human-linked origin. Only a few tested BCIs showed a strong positive linear correlation between daily BCI loads and PE indicating their low spatiotemporal variability. These are: cimetidine, clarithromycin, metformin, cotinine, bezafibrate, metronidazole and hydroxymetronidazole, diclofenac, and benzophenone 1. However, only high/long term usage pharmaceuticals: cimetidine and metformin as well as cotinine (metabolite of nicotine) performed well when tested in two independent datasets and catchments accounting for both spatial and temporal scales. Strong seasonal usage trends were observed for antihistamines, NSAIDs (anti-inflammatories), antibiotics and UV filters, invalidating them as PE markers. Key conclusions from the study are: (1) Cimetidine is the best performing BCI; (2) Chemical markers outperform genetic markers as PE BCIs; (3) Water utility PE estimates (PEWW) align well with PECEN and PEBCI values; (4) Ammonium/orthophosphate as well as viral PE markers suffer from high temporal variability, hence, they are not recommended as PEBCI markers, and, most importantly, (5) PEBCI calibration/validation at the country/region level is advised in order to establish the best PE markers suited for local/national needs and accounting for site/region specific uncertainties.
AB - This study identifies biochemical markers (BCIs) that can be used as population markers in wastewater-based epidemiology (WBE) and compares their estimates with other established population size estimation (PE) methods, including census data (PECEN). Several groups of BCIs (64 targets: genetic and chemical markers) were investigated in an intercity study, including 10 cities/towns within England equating to a population of ∼7 million people. Several selection criteria were applied to identify the best BCIs to provide robust estimation of population size at a catchment level: (1) excellent performance with analytical methods; (2) excellent fit of the linear regression model which indicates PE-driven BCI daily loads; (3) low temporal variability in usage; (4) human-linked origin. Only a few tested BCIs showed a strong positive linear correlation between daily BCI loads and PE indicating their low spatiotemporal variability. These are: cimetidine, clarithromycin, metformin, cotinine, bezafibrate, metronidazole and hydroxymetronidazole, diclofenac, and benzophenone 1. However, only high/long term usage pharmaceuticals: cimetidine and metformin as well as cotinine (metabolite of nicotine) performed well when tested in two independent datasets and catchments accounting for both spatial and temporal scales. Strong seasonal usage trends were observed for antihistamines, NSAIDs (anti-inflammatories), antibiotics and UV filters, invalidating them as PE markers. Key conclusions from the study are: (1) Cimetidine is the best performing BCI; (2) Chemical markers outperform genetic markers as PE BCIs; (3) Water utility PE estimates (PEWW) align well with PECEN and PEBCI values; (4) Ammonium/orthophosphate as well as viral PE markers suffer from high temporal variability, hence, they are not recommended as PEBCI markers, and, most importantly, (5) PEBCI calibration/validation at the country/region level is advised in order to establish the best PE markers suited for local/national needs and accounting for site/region specific uncertainties.
U2 - 10.1016/j.watres.2024.122527
DO - 10.1016/j.watres.2024.122527
M3 - Article
C2 - 39405625
VL - 268
SP - 122527
JO - Water research
JF - Water research
SN - 0043-1354
IS - Pt A
ER -