NFCP: N-Factor Commodity Pricing Through Term Structure Estimation

Allbwn ymchwil: Cyfraniad arallCyfraniad Arall

StandardStandard

NFCP: N-Factor Commodity Pricing Through Term Structure Estimation. / Aspinall, Thomas; Gepp, Adrian; Harris, Geoffrey et al.
2021.

Allbwn ymchwil: Cyfraniad arallCyfraniad Arall

HarvardHarvard

APA

CBE

MLA

VancouverVancouver

Author

RIS

TY - GEN

T1 - NFCP: N-Factor Commodity Pricing Through Term Structure Estimation

AU - Aspinall, Thomas

AU - Gepp, Adrian

AU - Harris, Geoffrey

AU - Kelly, Simone

AU - Southam, Colette

AU - Vanstone, Bruce J

PY - 2021/1/13

Y1 - 2021/1/13

N2 - Commodity pricing models are (systems of) stochastic differential equations that are utilized for the valuation and hedging of commodity contingent claims (i.e. derivative products on the commodity) and other commodity related investments. Commodity pricing models that capture market dynamics are of great importance to commodity market participants in order to exercise sound investment and risk-management strategies. Parameters of commodity pricing models are estimated through maximum likelihood estimation, using available term structure futures data of a commodity. 'NFCP' (n-factor commodity pricing) provides a framework for the modeling, parameter estimation, probabilistic forecasting, option valuation and simulation of commodity prices through state space and Monte Carlo methods, risk-neutral valuation and Kalman filtering. 'NFCP' allows the commodity pricing model to consist of n correlated factors, with both random walk and mean-reverting elements. The n-factor commodity pricing model framework was first presented in the work of Cortazar and Naranjo (2006) . Examples presented in 'NFCP' replicate the two-factor crude oil commodity pricing model presented in the prolific work of Schwartz and Smith (2000) with the approximate term structure futures data applied within this study provided in the 'NFCP' package.

AB - Commodity pricing models are (systems of) stochastic differential equations that are utilized for the valuation and hedging of commodity contingent claims (i.e. derivative products on the commodity) and other commodity related investments. Commodity pricing models that capture market dynamics are of great importance to commodity market participants in order to exercise sound investment and risk-management strategies. Parameters of commodity pricing models are estimated through maximum likelihood estimation, using available term structure futures data of a commodity. 'NFCP' (n-factor commodity pricing) provides a framework for the modeling, parameter estimation, probabilistic forecasting, option valuation and simulation of commodity prices through state space and Monte Carlo methods, risk-neutral valuation and Kalman filtering. 'NFCP' allows the commodity pricing model to consist of n correlated factors, with both random walk and mean-reverting elements. The n-factor commodity pricing model framework was first presented in the work of Cortazar and Naranjo (2006) . Examples presented in 'NFCP' replicate the two-factor crude oil commodity pricing model presented in the prolific work of Schwartz and Smith (2000) with the approximate term structure futures data applied within this study provided in the 'NFCP' package.

M3 - Other contribution

ER -