Not all saponins have a greater antiprotozoal activity than their related sapogenins
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: FEMS Microbiology Letters, Cyfrol 366, Rhif 13, 31.07.2019.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Not all saponins have a greater antiprotozoal activity than their related sapogenins
AU - Braganca, Radek
AU - Ramos-Morales, Eva
AU - Lyons, L.
AU - De La Fuente, Gabriel
AU - Newbold, C.J.
PY - 2019/7/31
Y1 - 2019/7/31
N2 - The antiprotozoal effect of saponins varies according to both the structure of the sapogenin and the composition and linkage of the sugar moieties to the sapogenin. The effect of saponins on protozoa has been considered to be transient as it was thought that when saponins were deglycosilated to sapogenins in the rumen they became inactive; however, no studies have yet evaluated the antiprotozoal effect of sapogenins compared to their related saponins. The aims of this study were to evaluate the antiprotozoal effect of eighteen commercially available triterpenoid and steroid saponins and sapogenins in vitro, to investigate the effect of variations in the sugar moiety of related saponins and to compare different sapogenins bearing identical sugar moieties. Our results show that antiprotozoal activity is not an inherent feature of all saponins and that small variations in the structure of a compound can have a significant influence on their biological activity. Some sapogenins (20(S)-protopanaxatriol, asiatic acid and madecassic acid) inhibited protozoa activity to a greater extent than their corresponding saponins (Re and Rh1 and asiaticoside and madecassoside), thus the original hypothesis that the transient nature of the antiprotozoal action of saponins is due to the deglycosilation of saponins needs to be revisited.
AB - The antiprotozoal effect of saponins varies according to both the structure of the sapogenin and the composition and linkage of the sugar moieties to the sapogenin. The effect of saponins on protozoa has been considered to be transient as it was thought that when saponins were deglycosilated to sapogenins in the rumen they became inactive; however, no studies have yet evaluated the antiprotozoal effect of sapogenins compared to their related saponins. The aims of this study were to evaluate the antiprotozoal effect of eighteen commercially available triterpenoid and steroid saponins and sapogenins in vitro, to investigate the effect of variations in the sugar moiety of related saponins and to compare different sapogenins bearing identical sugar moieties. Our results show that antiprotozoal activity is not an inherent feature of all saponins and that small variations in the structure of a compound can have a significant influence on their biological activity. Some sapogenins (20(S)-protopanaxatriol, asiatic acid and madecassic acid) inhibited protozoa activity to a greater extent than their corresponding saponins (Re and Rh1 and asiaticoside and madecassoside), thus the original hypothesis that the transient nature of the antiprotozoal action of saponins is due to the deglycosilation of saponins needs to be revisited.
KW - SAPONIN
KW - PROTOZOA
U2 - 10.1093/femsle/fnz144
DO - 10.1093/femsle/fnz144
M3 - Article
VL - 366
JO - FEMS Microbiology Letters
JF - FEMS Microbiology Letters
SN - 0378-1097
IS - 13
ER -