On the stoichiometry of zirconium carbide

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • Claudia Gasparrini
    Grand Challenges in Ecosystem and the Environment Initiative, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK alexander.papadopulos@plants.ox.ac.uk.
  • Dhan-sham Rana
    University of Cambridge
  • Niccolò Le Brun
    Grand Challenges in Ecosystem and the Environment Initiative, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK alexander.papadopulos@plants.ox.ac.uk.
  • Denis Horlait
    Université Bordeaux
  • Christos N. Markides
    Grand Challenges in Ecosystem and the Environment Initiative, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK alexander.papadopulos@plants.ox.ac.uk.
  • Ian Farnan
    University of Cambridge
  • William E. Lee
    Grand Challenges in Ecosystem and the Environment Initiative, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK alexander.papadopulos@plants.ox.ac.uk.
Abstract: The dependencies of the enhanced thermomechanical properties of zirconium carbide (ZrCx) with sample purity and stoichiometry are still not understood due to discrepancies in the literature. Multiple researchers have recently reported a linear relation between the carbon to zirconium atomic ratio (C/Zr) and the lattice parameter, in contrast with a more established relationship that suggests that the lattice parameter value attains a maximum value at a C/Zr ~ 0.83. In this study, the relationship between C/Zr atomic ratio and the lattice parameter is critically assessed: it is found that recent studies reporting the thermophysical properties of ZrCx have unintentionally produced and characterised samples containing zirconium oxycarbide. To avoid such erroneous characterization of ZrCx thermophysical properties in the future, we propose a method for the accurate measurement of the stoichiometry of ZrCx using three independent experimental techniques, namely: elemental analysis, thermogravimetric analysis and nuclear magnetic resonance spectroscopy. Although a large scatter in the results (ΔC/Zr = 0.07) from these different techniques was found when used independently, when combining the techniques together consistent values of x in ZrCx were obtained.

Allweddeiriau

Iaith wreiddiolSaesneg
Tudalennau (o-i)6347
CyfnodolynScientific Reports
Cyfrol10
Rhif y cyfnodolyn1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 14 Ebr 2020

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau