Photonic Hook Initiated Using an Air–Liquid Interface
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Photonics, Cyfrol 10, 1175, 23.10.2023.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Photonic Hook Initiated Using an Air–Liquid Interface
AU - Yue, Liyang
AU - Yan, Bing
AU - Wang, Zengbo (James )
AU - Minin, Oleg
AU - Minin, Igor
PY - 2023/10/23
Y1 - 2023/10/23
N2 - In this paper, we demonstrate a novel photonic hook being initiated using an air–liquid interface (ALI). This bent light focus is produced by immersing a dielectric micro-cylinder partially at the edge of a thin liquid film whose thickness is smaller than the diameter of the micro-cylinder. Unlike the well-known properties of normal near-field focuses, this photonic hook propagates horizontally in the liquid along the ALI at specific depths and does not require the material processing of microscopic particles or the modulation of light irradiation for initiation. A morphological analysis indicates that the contrast in the refractive indexes of the ALI causes this phenomenon at the shadow end of the micro-cylinder with a transverse dimension smaller than the diffraction limit. Compared to previously discovered photonic hooks, the unique setup of this photonic hook can generate a force field that enables optical trapping in the region slightly beneath the ALI, and the related optical pressures have been simulated.
AB - In this paper, we demonstrate a novel photonic hook being initiated using an air–liquid interface (ALI). This bent light focus is produced by immersing a dielectric micro-cylinder partially at the edge of a thin liquid film whose thickness is smaller than the diameter of the micro-cylinder. Unlike the well-known properties of normal near-field focuses, this photonic hook propagates horizontally in the liquid along the ALI at specific depths and does not require the material processing of microscopic particles or the modulation of light irradiation for initiation. A morphological analysis indicates that the contrast in the refractive indexes of the ALI causes this phenomenon at the shadow end of the micro-cylinder with a transverse dimension smaller than the diffraction limit. Compared to previously discovered photonic hooks, the unique setup of this photonic hook can generate a force field that enables optical trapping in the region slightly beneath the ALI, and the related optical pressures have been simulated.
U2 - 10.3390/photonics10101175
DO - 10.3390/photonics10101175
M3 - Article
VL - 10
JO - Photonics
JF - Photonics
SN - 2304-6732
M1 - 1175
ER -