Photosensitive Alternative Splicing of the Circadian Clock Gene timeless Is Population Specific in a Cold-Adapted Fly, Drosophila montana
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: G3: Genes, Genomes, Genetics, Cyfrol 8, Rhif 4, 01.04.2018, t. 1291-1297.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Photosensitive Alternative Splicing of the Circadian Clock Gene timeless Is Population Specific in a Cold-Adapted Fly, Drosophila montana
AU - Tapanainen, Riikka
AU - Parker, Darren J
AU - Kankare, Maaria
N1 - Copyright © 2018 Tapanainen et al.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - To function properly, organisms must adjust their physiology, behavior and metabolism in response to a suite of varying environmental conditions. One of the central regulators of these changes is organisms' internal circadian clock, and recent evidence has suggested that the clock genes are also important in the regulation of seasonal adjustments. In particular, thermosensitive splicing of the core clock gene timeless in a cosmopolitan fly, Drosophila melanogaster, has implicated this gene to be involved in thermal adaptation. To further investigate this link we examined the splicing of timeless in a northern malt fly species, Drosophila montana, which can withstand much colder climatic conditions than its southern relative. We studied northern and southern populations from two different continents (North America and Europe) to find out whether and how the splicing of this gene varies in response to different temperatures and day lengths. Interestingly, we found that the expression of timeless splice variants was sensitive to differences in light conditions, and while the flies of all study populations showed a change in the usage of splice variants in constant light compared to LD 22:2, the direction of the shift varied between populations. Overall, our findings suggest that the splicing of timeless in northern Drosophila montana flies is photosensitive, rather than thermosensitive and highlights the value of studying multiple species and populations in order to gain perspective on the generality of gene function changes in different kinds of environmental conditions.
AB - To function properly, organisms must adjust their physiology, behavior and metabolism in response to a suite of varying environmental conditions. One of the central regulators of these changes is organisms' internal circadian clock, and recent evidence has suggested that the clock genes are also important in the regulation of seasonal adjustments. In particular, thermosensitive splicing of the core clock gene timeless in a cosmopolitan fly, Drosophila melanogaster, has implicated this gene to be involved in thermal adaptation. To further investigate this link we examined the splicing of timeless in a northern malt fly species, Drosophila montana, which can withstand much colder climatic conditions than its southern relative. We studied northern and southern populations from two different continents (North America and Europe) to find out whether and how the splicing of this gene varies in response to different temperatures and day lengths. Interestingly, we found that the expression of timeless splice variants was sensitive to differences in light conditions, and while the flies of all study populations showed a change in the usage of splice variants in constant light compared to LD 22:2, the direction of the shift varied between populations. Overall, our findings suggest that the splicing of timeless in northern Drosophila montana flies is photosensitive, rather than thermosensitive and highlights the value of studying multiple species and populations in order to gain perspective on the generality of gene function changes in different kinds of environmental conditions.
KW - 3' Untranslated Regions/genetics
KW - Adaptation, Physiological/genetics
KW - Alternative Splicing/genetics
KW - Analysis of Variance
KW - Animals
KW - Base Sequence
KW - Circadian Clocks/genetics
KW - Cold Temperature
KW - Drosophila/genetics
KW - Drosophila Proteins/genetics
KW - Female
KW - Genes, Insect
KW - Geography
KW - Introns/genetics
KW - Light
KW - Mutation/genetics
U2 - 10.1534/g3.118.200050
DO - 10.1534/g3.118.200050
M3 - Article
C2 - 29472309
VL - 8
SP - 1291
EP - 1297
JO - G3: Genes, Genomes, Genetics
JF - G3: Genes, Genomes, Genetics
SN - 2160-1836
IS - 4
ER -