Previous exposure mediates the response of eelgrass to future warming via clonal transgenerational plasticity

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dangosydd eitem ddigidol (DOI)

  • Katherine DuBois
    University of California, Davis
  • Jay Stachowicz
    University of California, Davis
  • Susan Williams
    University of California, Davis
Mortality and shifts in species distributions are among the most obvious consequences of extreme climatic events. However, the sublethal effects of an extreme event can have persistent impacts throughout an individual’s lifetime and into future generations via within-generation and transgenerational phenotypic plasticity. These changes can either confer resilience or increase susceptibility to subsequent stressful events, with impacts on population, community, and potentially ecosystem processes. Here, we show how a simulated extreme warming event causes persistent changes in the morphology and growth of a foundation species (eelgrass, Zostera marina) across multiple clonal generations and multiple years. The effect of previous parental exposure to warming increased aboveground biomass, shoot length, and aboveground–belowground biomass ratios while also greatly decreasing leaf growth rates. Long-term increases in aboveground–belowground biomass ratios could indicate an adaptive clonal transgenerational response to warmer climates that reduces the burden of increased respiration in belowground biomass. These transgenerational responses were likely decoupled from clonal parent provisioning as rhizome size of clonal offspring was standardized at planting and rhizome starch reserves were not impacted by warming treatments. Future investigations into potential epigenetic mechanisms underpinning such clonal transgenerational plasticity will be necessary to understand the resilience of asexual foundation species to repeated extreme climatic events.
Iaith wreiddiolSaesneg
Rhif yr erthygle03169
CyfnodolynEcology
Cyfrol101
Rhif y cyfnodolyn12
Dyddiad ar-lein cynnar26 Awst 2020
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 1 Rhag 2020
Cyhoeddwyd yn allanolIe
Gweld graff cysylltiadau