Radioiodine abatement–Development of radioiodine targeting strategies in the light of zero emission
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Progress in Nuclear Energy, Cyfrol 155, 01.11.2023, t. 104918.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Radioiodine abatement–Development of radioiodine targeting strategies in the light of zero emission
AU - Robshaw, Thomas
AU - Kearney, Sarah
AU - Turner, Joshua
AU - Simoni, Marco
AU - Baidak, Aliaksandr
AU - Sharrad, Clint
AU - Walkley, Brant
AU - Ogden, Mark
PY - 2023/11/1
Y1 - 2023/11/1
N2 - The abatement of iodine plays an important role in ensuring nuclear energy has minimal environmental impacts. During nuclear fuel recycling I-129 is typically released into the off-gas where current methods of abatement revolve around capturing the iodine and discharging it in a less harmful aqueous stream. This work looks at the potential of changing current radioiodine abatement practices by developing methods to augment current practice to selectively remove iodine from the aqueous phase with the long term view of immobilisation of iodine in a suitable wasteform for long term disposal. 12 metalated-silica based iodine targeting sorbents were screened for implementation in this abatement technology, including the use of Cu, Bi and Ag. The best performing materials under simulated caustic conditions were Ag based materials with aminothiourea (72 mg g−1) and mercapto-ligands (64 mg g−1). Under simulated conditions representing the liquid effluent arising from off-gas caustic scrubber, both copper and silver containing absorbents decreased (average ∼80% and ∼15% respectively) relative to equilibrium. Work progressed towards dynamic column experiments, where a 50% reduction in uptake relative to equilibrium experiments indicated hindered kinetics. Radiolytic stability experiments showed better iodide retention in the Ag-aminothiourea silica adsorbent (IX11), which did not release any iodide after irradiation. These materials were designed with methods of disposal in mind therefore ongoing work is investigating the cementitious encapsulation of these materials.
AB - The abatement of iodine plays an important role in ensuring nuclear energy has minimal environmental impacts. During nuclear fuel recycling I-129 is typically released into the off-gas where current methods of abatement revolve around capturing the iodine and discharging it in a less harmful aqueous stream. This work looks at the potential of changing current radioiodine abatement practices by developing methods to augment current practice to selectively remove iodine from the aqueous phase with the long term view of immobilisation of iodine in a suitable wasteform for long term disposal. 12 metalated-silica based iodine targeting sorbents were screened for implementation in this abatement technology, including the use of Cu, Bi and Ag. The best performing materials under simulated caustic conditions were Ag based materials with aminothiourea (72 mg g−1) and mercapto-ligands (64 mg g−1). Under simulated conditions representing the liquid effluent arising from off-gas caustic scrubber, both copper and silver containing absorbents decreased (average ∼80% and ∼15% respectively) relative to equilibrium. Work progressed towards dynamic column experiments, where a 50% reduction in uptake relative to equilibrium experiments indicated hindered kinetics. Radiolytic stability experiments showed better iodide retention in the Ag-aminothiourea silica adsorbent (IX11), which did not release any iodide after irradiation. These materials were designed with methods of disposal in mind therefore ongoing work is investigating the cementitious encapsulation of these materials.
KW - Radioiodine
KW - Abatement
KW - Net zero emission
KW - Selective halide absorbent
KW - nuclear fuel cycle
U2 - 10.1016/j.pnucene.2023.104918
DO - 10.1016/j.pnucene.2023.104918
M3 - Article
VL - 155
SP - 104918
JO - Progress in Nuclear Energy
JF - Progress in Nuclear Energy
SN - 0149-1970
ER -