Regularised estimators for ARFIMA processes

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dangosydd eitem ddigidol (DOI)

  • O. Vivero
    University of Manchester
  • W.P. Heath
    University of Manchester
Stochastic processes with long-range dependence are found in many applications. ARFIMA models can be used to characterise both their short-term correlations and the phenomenon of long-range dependence. Maximum likelihood estimates of the model parameters have nice statistical properties but are ill-conditioned and hard to compute. Whittle's approximation has the same asymptotic properties and yet is easier to compute. We propose a regularisation of Whittle's approximation that overcomes the problem of ill-conditioning. Good results are demonstrated in numerical simulations
Iaith wreiddiolAnadnabyddus
Tudalennau (o-i)298-303
Nifer y tudalennau6
CyfnodolynIFAC Proceedings Volumes (IFAC-PapersOnline)
Cyfrol45
Rhif y cyfnodolyn16
Dyddiad ar-lein cynnar17 Gorff 2012
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 21 Ebr 2016
Cyhoeddwyd yn allanolIe
Gweld graff cysylltiadau