Regularised estimators for fractional Gaussian noise

Allbwn ymchwil: Cyfraniad at gynhadleddPapuradolygiad gan gymheiriaid

Fersiynau electronig

Dangosydd eitem ddigidol (DOI)

  • O. Vivero
    University of Manchester
  • W.P. Heath
    University of Manchester
There is significant interest in long-range dependent processes since they occur in a wide range of phenomena across different areas of study. Based on the available models capable of describing long-range dependence, various parameter estimation methods have been developed. This paper revisits the maximum likelihood estimator and its computationally efficient approximations: the Whittle Estimator and the Circulant Embedding estimator. Based on the properties of these, a regularisation method for datasets largely contaminated with errors is introduced.
Iaith wreiddiolAnadnabyddus
Tudalennau5025-5030
Nifer y tudalennau6
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 22 Chwef 2011
Cyhoeddwyd yn allanolIe
Digwyddiad49th IEEE Conference on Decision and Control (CDC) - Atlanta, Yr Unol Daleithiau
Hyd: 15 Rhag 201017 Rhag 2010

Cynhadledd

Cynhadledd49th IEEE Conference on Decision and Control (CDC)
Gwlad/TiriogaethYr Unol Daleithiau
DinasAtlanta
Cyfnod15/12/1017/12/10
Gweld graff cysylltiadau