Fersiynau electronig

Dogfennau

  • ECOINF_102628_session_report-2

    Llawysgrif awdur wedi’i dderbyn, 1.03 MB, dogfen-PDF

    Embargo yn dod i ben: 5/05/25

Dangosydd eitem ddigidol (DOI)

  • Nathan Goncalves
    Michigan State University
  • Diogo Martins Rosa
    National Institute for Amazon Research (INPA)
  • Dalton Freitas do Valle
    National Institute of Amazonian Research (INPA), Manaus
  • Marielle Smith
  • Ricardo Dalagnol
    University of California, Los AngelesThe California Institute of Technology
  • Danilo Roberti Alves Almeida
    University of Sao Paulo
  • Bruce Nelson
    National Institute of Amazonian Research (INPA), Manaus
  • Scott C. Stark
    Michigan State University
Amazon forests are characterized by rich structural diversity. However, the influence of factors such as topography, soil attributes, and external disturbances on structural variability is not always well characterized, and traditional structural metrics may be inadequate to capture this type of complexity. While LiDAR offers expanded structural insights, traditional parameters used in LiDAR analysis, such as mean or maximum canopy height, are not always well directly linked to environmental variables like topography. Emerging approaches merge LiDAR with machine learning to uncover deeper structural complexities. However, work to date may fail to fully utilize the potential of fine-scale LiDAR information. Here we introduce a novel approach, leveraging 2D point cloud images derived from a profiling canopy LiDAR (PCL). The technique targets intricate details within LiDAR point clouds by using deep learning algorithms. With a dataset from the Central Amazon comprising 18 multitemporal transects of 450 m in length, our objective was to detect structural "fingerprints" of varied topographical types along a hillslope, comprising: Riparian, White-sand, and Plateau, and to detect any gradient of structural shifts based on terrain variations here represented by the height above the nearest drainage (HAND). The dataset was trained and tested using a leave-one-group-out approach (LOGO) in which, for each iteration, a complete 450 m multitemporal transect was excluded from training and tested after each iteration. The fast.ai platform and a ResNet-34 architecture, coupled with transfer learning, were used to perform a classification to distinguish between three topographical types. Furthermore, a hybrid model combining a Convolutional Autoencoder, and Partial Least Square (PLS) regression was designed to detect forest structural gradient correlations with HAND variation. Cross-validation achieved a promising high weighted F1 score of 0.83 to classify forests based on the topographical types. Additionally, a combined Convolutional Autoencoder and PLS regression revealed a strong correlation (R2 = 0.76) between actual and predicted HAND. Innovatively combining deep learning with ground-based PCL LiDAR, our study revealed unique Amazon Forest structures connected to topographic variation. Our findings underscore the transformative potential of such integrative approaches for investigating forest dynamics and promise a powerful new tool for understanding climate-related forest structure change.
Iaith wreiddiolSaesneg
Rhif yr erthygl102628
CyfnodolynEcological Informatics
Dyddiad ar-lein cynnar5 Mai 2024
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 31 Gorff 2024
Gweld graff cysylltiadau