Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • Graham Bird
  • Karen Hudson-Edwards
    College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, 9 TR10 9EZ, UK.
  • Patrick Byrne
    Centre for Public Health, Liverpool John Moores University
  • Mark Macklin
    University of Lincoln
  • Paul Brewer
    Aberystwyth University
  • Richard Williams
    Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
The failure of the Mount Polley tailings storage facility (TSF) in August 2014 was one of the largest magnitude failures on record, and released approximately 25 Mm3 of material, including c. 7.3 Mm3 of tailings into Hazeltine Creek, part of the Quesnel River watershed. This study evaluates the impact of the spill on the geochemistry of river channel and floodplain sediments and utilizes Pb isotope ratios and a multi-variate mixing model to establish sediment provenance. In comparison to sediment quality guidelines and background concentrations, Cu and V were found to be most elevated. Copper in river channel sediments ranged from 88-800 mg kg-1, with concentrations in sand-rich and clay/silt-rich sediments being statistically significantly different. Concentrations in river channel were believed to be influenced by hydraulic sorting during the rising and falling limbs of the flood wave caused by the tailings spill. Results highlight the importance of erosive processes, instigated by the failure, in incorporating soils and sediments into the sediment load transported and deposited within Hazeltine Creek. In this instance, these processes diluted tailings with relatively clean material that reduced metal concentrations away from the TSF failure. This does however, highlight environmental risks in similar catchments downstream of TSFs that contain metal-rich sediment within river channels and floodplain that have been contaminated by historical mining.

Allweddeiriau

Iaith wreiddiolSaesneg
Rhif yr erthygl105086
Nifer y tudalennau11
CyfnodolynApplied Geochemistry
Cyfrol134
Dyddiad ar-lein cynnar9 Medi 2021
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Tach 2021

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau