Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

StandardStandard

Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. / Malham, Shelagh; Farkas, Kata; McDonald, James et al.
Yn: Science of the Total Environment, Cyfrol 634, 01.09.2018, t. 1174.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

APA

CBE

MLA

VancouverVancouver

Malham S, Farkas K, McDonald J, Jones DL, Cooper D, de Rougemont A. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Science of the Total Environment. 2018 Medi 1;634:1174. Epub 2018 Ebr 18. doi: 10.1016/j.scitotenv.2018.04.038

Author

RIS

TY - JOUR

T1 - Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters

AU - Malham, Shelagh

AU - Farkas, Kata

AU - McDonald, James

AU - Jones, Davey L.

AU - Cooper, David

AU - de Rougemont, Alexis

PY - 2018/9/1

Y1 - 2018/9/1

N2 - Enteric viruses represent a global public health threat and are implicated in numerous foodborne and waterborne disease outbreaks. Nonetheless, little is known of their fate and stability in the environment. In this study we used carefully validated methods to monitor enteric viruses, namely adenovirus (AdV), JC polyomavirus (JVC), noroviruses (NoVs), Sapovirus (SaV) and hepatitis A and E viruses (HAV and HEV) from wastewater source to veaches and shellfish beds. Wastewater influent and effluent, surface water, sediment and shellfish samples were collected in the conwy catchment (North Wales, UK) once a month for one year. High concentrations of AdV and JCV were found in the majority of samples, and no seasonal patterns were observed. No HAV and HEV were detected and no related illnesses were reported in the area during the period of sampling. Noroviruses and SaV were also detected at high concentrations in wastewater and surface water, and their presence correlated with local gastroenteritis outbreaks during teh spring and autumn seasons. Noroviruses were also found in estuarine sediment and in shellfish harvested for human consumption. As PCR-based methods were used for quantification, viral infectivity and degradation was estimated using a NoV capsid integrity assay. The assay revealed low-levels of viral decay in wastewater effluent compared to influent, and more significant decay in environmental waters and sediment. Results suggest that AdV and JCV may be suitable markers for the assessment of the spatial distribution of wastewater contamination in the environment; pathogenic viruses can be directly monitored during the after reported outbreaks to prevent further environment-derived illnesses

AB - Enteric viruses represent a global public health threat and are implicated in numerous foodborne and waterborne disease outbreaks. Nonetheless, little is known of their fate and stability in the environment. In this study we used carefully validated methods to monitor enteric viruses, namely adenovirus (AdV), JC polyomavirus (JVC), noroviruses (NoVs), Sapovirus (SaV) and hepatitis A and E viruses (HAV and HEV) from wastewater source to veaches and shellfish beds. Wastewater influent and effluent, surface water, sediment and shellfish samples were collected in the conwy catchment (North Wales, UK) once a month for one year. High concentrations of AdV and JCV were found in the majority of samples, and no seasonal patterns were observed. No HAV and HEV were detected and no related illnesses were reported in the area during the period of sampling. Noroviruses and SaV were also detected at high concentrations in wastewater and surface water, and their presence correlated with local gastroenteritis outbreaks during teh spring and autumn seasons. Noroviruses were also found in estuarine sediment and in shellfish harvested for human consumption. As PCR-based methods were used for quantification, viral infectivity and degradation was estimated using a NoV capsid integrity assay. The assay revealed low-levels of viral decay in wastewater effluent compared to influent, and more significant decay in environmental waters and sediment. Results suggest that AdV and JCV may be suitable markers for the assessment of the spatial distribution of wastewater contamination in the environment; pathogenic viruses can be directly monitored during the after reported outbreaks to prevent further environment-derived illnesses

U2 - 10.1016/j.scitotenv.2018.04.038

DO - 10.1016/j.scitotenv.2018.04.038

M3 - Article

VL - 634

SP - 1174

JO - Science of the Total Environment

JF - Science of the Total Environment

SN - 0048-9697

ER -