Sensitivity of palaeotidal models of the northwest European shelf seas to glacial isostatic adjustment since the Last Glacial Maximum
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Quaternary Science Reviews, Cyfrol 151, 01.11.2016, t. 198-211.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Sensitivity of palaeotidal models of the northwest European shelf seas to glacial isostatic adjustment since the Last Glacial Maximum
AU - Ward, Sophie
AU - Neill, Simon
AU - Scourse, James
AU - Bradley, Sarah L.
AU - Uehara, Katsuto
N1 - Natural Environment Research Council through grant NE/I527853/1
PY - 2016/11/1
Y1 - 2016/11/1
N2 - The spatial and temporal distribution of relative sea-level change over the northwest European shelf seas has varied considerably since the Last Glacial Maximum, due to eustatic sea-level rise and a complex isostatic response to deglaciation of both near- and far-field ice sheets. Because of the complex pattern of relative sea level changes, the region is an ideal focus for modelling the impact of significant sea-level change on shelf sea tidal dynamics. Changes in tidal dynamics influence tidal range, the location of tidal mixing fronts, dissipation of tidal energy, shelf sea biogeochemistry and sediment transport pathways. Significant advancements in glacial isostatic adjustment (GIA) modelling of the region have been made in recent years, and earlier palaeotidal models of the northwest European shelf seas were developed using output from less well-constrained GIA models as input to generate palaeobathymetric grids. We use the most up-to-date and well-constrained GIA model for the region as palaeotopographic input for a new high resolution, three-dimensional tidal model (ROMS) of the northwest European shelf seas. With focus on model output for 1 ka time slices from the Last Glacial Maximum (taken as being 21 ka BP) to present day, we demonstrate that spatial and temporal changes in simulated tidal dynamics are very sensitive to relative sea-level distribution. The new high resolution palaeotidal model is considered a significant improvement on previous depth-averaged palaeotidal models, in particular where the outputs are to be used in sediment transport studies, where consideration of the near-bed stress is critical, and for constraining sea level index points.
AB - The spatial and temporal distribution of relative sea-level change over the northwest European shelf seas has varied considerably since the Last Glacial Maximum, due to eustatic sea-level rise and a complex isostatic response to deglaciation of both near- and far-field ice sheets. Because of the complex pattern of relative sea level changes, the region is an ideal focus for modelling the impact of significant sea-level change on shelf sea tidal dynamics. Changes in tidal dynamics influence tidal range, the location of tidal mixing fronts, dissipation of tidal energy, shelf sea biogeochemistry and sediment transport pathways. Significant advancements in glacial isostatic adjustment (GIA) modelling of the region have been made in recent years, and earlier palaeotidal models of the northwest European shelf seas were developed using output from less well-constrained GIA models as input to generate palaeobathymetric grids. We use the most up-to-date and well-constrained GIA model for the region as palaeotopographic input for a new high resolution, three-dimensional tidal model (ROMS) of the northwest European shelf seas. With focus on model output for 1 ka time slices from the Last Glacial Maximum (taken as being 21 ka BP) to present day, we demonstrate that spatial and temporal changes in simulated tidal dynamics are very sensitive to relative sea-level distribution. The new high resolution palaeotidal model is considered a significant improvement on previous depth-averaged palaeotidal models, in particular where the outputs are to be used in sediment transport studies, where consideration of the near-bed stress is critical, and for constraining sea level index points.
U2 - 10.1016/j.quascirev.2016.08.034
DO - 10.1016/j.quascirev.2016.08.034
M3 - Article
VL - 151
SP - 198
EP - 211
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
SN - 0277-3791
ER -