The biotic and abiotic drivers of timing of breeding and the consequences of breeding early in changing world
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Ornithology, Cyfrol 140, Rhif 3, 11.07.2023.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - The biotic and abiotic drivers of timing of breeding and the consequences of breeding early in changing world
AU - Sutton, Alex
AU - Freeman, Nikole E
PY - 2023/7/11
Y1 - 2023/7/11
N2 - The decision of when to breed is an important determinant of individual fitness. However, despite a multitude of studies investigating the intraspecific relationship between timing of breeding and reproductive performance, less is known about why the strength of this relationship varies between species. Furthermore, environmental change has the potential to alter the relationship between lay date and fitness, but there is still a limited understanding of what mechanisms drive these differential responses to change environmental conditions. We propose that the potential effects of environmental change on the relationship between timing of breeding and fitness are dependent on 2 primary factors: (1) the potential constraints imposed by breeding early and (2) the drivers of higher fitness of early breeders. We first summarize multiple hypotheses proposed to explain why breeding early, either based on absolute date or relative to conspecifics, increases fitness. We then summarize the factors that may constrain when individuals initiate breeding, including limits on the ability to advance their lay date or extend the length of their breeding season under favorable conditions. Understanding constraints on the timing of breeding allows for the identification of obligate (singlebrooded species that do not attempt to breed after a specific date) and facultative (predominantly multi-brooding species that have long breeding seasons) early breeding species that are likely differently affected by climate change. Finally, we propose a simple mathematical formula that incorporates the costs and benefits associated with early breeding to quantify how climate change could influence the benefits of early breeding and either mitigate or exacerbate the costs. Our cost-benefit approach provides a clear framework to predict how species may shift the timing of their breeding to maximize fitness in a changing world
AB - The decision of when to breed is an important determinant of individual fitness. However, despite a multitude of studies investigating the intraspecific relationship between timing of breeding and reproductive performance, less is known about why the strength of this relationship varies between species. Furthermore, environmental change has the potential to alter the relationship between lay date and fitness, but there is still a limited understanding of what mechanisms drive these differential responses to change environmental conditions. We propose that the potential effects of environmental change on the relationship between timing of breeding and fitness are dependent on 2 primary factors: (1) the potential constraints imposed by breeding early and (2) the drivers of higher fitness of early breeders. We first summarize multiple hypotheses proposed to explain why breeding early, either based on absolute date or relative to conspecifics, increases fitness. We then summarize the factors that may constrain when individuals initiate breeding, including limits on the ability to advance their lay date or extend the length of their breeding season under favorable conditions. Understanding constraints on the timing of breeding allows for the identification of obligate (singlebrooded species that do not attempt to breed after a specific date) and facultative (predominantly multi-brooding species that have long breeding seasons) early breeding species that are likely differently affected by climate change. Finally, we propose a simple mathematical formula that incorporates the costs and benefits associated with early breeding to quantify how climate change could influence the benefits of early breeding and either mitigate or exacerbate the costs. Our cost-benefit approach provides a clear framework to predict how species may shift the timing of their breeding to maximize fitness in a changing world
M3 - Article
VL - 140
JO - Ornithology
JF - Ornithology
SN - 2732-4613
IS - 3
ER -