The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Scientific Reports, Cyfrol 6, 14.10.2016, t. 35548.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability
AU - Myers, Katie N
AU - Barone, Giancarlo
AU - Ganesh, Anil
AU - Staples, Christopher J
AU - Howard, Anna E
AU - Beveridge, Ryan D
AU - Maslen, Sarah
AU - Skehel, J Mark
AU - Collis, Spencer J
PY - 2016/10/14
Y1 - 2016/10/14
N2 - It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.
AB - It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.
U2 - 10.1038/srep35548
DO - 10.1038/srep35548
M3 - Article
C2 - 27739501
VL - 6
SP - 35548
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
ER -