The deepwater oxygen deficit in stratified shallow seas is mediated by diapycnal mixing
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Nature Communications, Cyfrol 15, Rhif 3136, 15:3136, 11.04.2024.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - The deepwater oxygen deficit in stratified shallow seas is mediated by diapycnal mixing
AU - Rippeth, Tom
AU - Shen, Sijing
AU - Lincoln, Ben
AU - Scannell, Brian
AU - Meng, Xin
AU - Hopkins, Joanna
AU - Sharples, Jonathan
N1 - © 2024. The Author(s).
PY - 2024/4/11
Y1 - 2024/4/11
N2 - Seasonally stratified shelf seas are amongst the most biologically productive on the planet. A consequence is that the deeper waters can become oxygen deficient in late summer. Predictions suggest global warming will accelerate this deficiency. Here we integrate turbulence timeseries with vertical profiles of water column properties from a seasonal stratified shelf sea to estimate oxygen and biogeochemical fluxes. The profiles reveal a significant subsurface chlorophyll maximum and associated mid-water oxygen maximum. We show that the oxygen maximum supports both upward and downwards O2 fluxes. The upward flux is into the surface mixed layer, whilst the downward flux into the deep water will partially off-set the seasonal O2 deficit. The results indicate the fluxes are sensitive to both the water column structure and mixing rates implying the development of the seasonal O2 deficit is mediated by diapcynal mixing. Analysis of current shear indicate that the downward flux is supported by tidal mixing, whilst the upwards flux is dominated by wind driven near-inertial shear. Summer storminess therefore plays an important role in the development of the seasonal deep water O2 deficit.
AB - Seasonally stratified shelf seas are amongst the most biologically productive on the planet. A consequence is that the deeper waters can become oxygen deficient in late summer. Predictions suggest global warming will accelerate this deficiency. Here we integrate turbulence timeseries with vertical profiles of water column properties from a seasonal stratified shelf sea to estimate oxygen and biogeochemical fluxes. The profiles reveal a significant subsurface chlorophyll maximum and associated mid-water oxygen maximum. We show that the oxygen maximum supports both upward and downwards O2 fluxes. The upward flux is into the surface mixed layer, whilst the downward flux into the deep water will partially off-set the seasonal O2 deficit. The results indicate the fluxes are sensitive to both the water column structure and mixing rates implying the development of the seasonal O2 deficit is mediated by diapcynal mixing. Analysis of current shear indicate that the downward flux is supported by tidal mixing, whilst the upwards flux is dominated by wind driven near-inertial shear. Summer storminess therefore plays an important role in the development of the seasonal deep water O2 deficit.
U2 - 10.1038/s41467-024-47548-2
DO - 10.1038/s41467-024-47548-2
M3 - Article
C2 - 38605081
VL - 15
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 3136
M1 - 15:3136
ER -