The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

Plastic accumulating in the environment, especially microplastics (defined as particles <5 mm), can lead to a range of problems and potential loss of ecosystem services. Polyhydroxyalkanoates (PHAs) are biodegradable plastics used in the manufacture of mulch films, and packaging as an alternative to minimize plastic residue accumulation and reduce soil pollution. Little is known, however, about the effect of microbioplastics on soil-plant interactions, especially soil microbial community structure and functioning in agroecosystems. For the first time, we combined zymography (to localize enzyme activity hotspots) with substrate-induced growth respiration to investigate the effect of PHA addition on soil microbial community structure, growth, and exoenzyme kinetics in the microplastisphere (i.e. interface between soil and microplastic particles) compared to the rhizosphere and bulk soil. We used the common PHA biopolymer, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to show that PHBV was readily used by the microbial community as a source of carbon (C) resulting in an increased specific microbial growth rate and a more active microbial biomass in the microplastisphere in comparison to the bulk soil. Higher β-glucosidase and leucine aminopeptidase activities (0.6-5.0 times higher Vmax) and lower enzyme affinities (1.5-2.0 times higher Km) were also detected in the microplastisphere relative to the rhizosphere. Furthermore, the PHBV addition changed the soil bacterial community at different taxonomical levels and increased the alpha diversity, as well as the relative abundance of Acidobacteria and Verrucomicrobia phyla, compared to the untreated soils. Overall, PHBV addition created soil hotspots where C and nutrient turnover is greatly enhanced, mainly driven by the accelerated microbial biomass and activity. In conclusion, microbioplastics have the potential to alter soil ecological functioning and biogeochemical cycling (e.g., SOM decomposition).
Iaith wreiddiolSaesneg
Rhif yr erthygl108211
CyfnodolynSoil Biology and Biochemistry
Cyfrol156
Dyddiad ar-lein cynnar11 Maw 2021
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Mai 2021

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau