StandardStandard

The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits. / Ward, Sophie; Bradley, S. L.; Roseby, Z. A. et al.
Yn: Journal of Geophysical Research: Oceans, Cyfrol 130, Rhif 4, e2024JC022092, 04.04.2025.

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

HarvardHarvard

Ward, S, Bradley, SL, Roseby, ZA, Wilmes, S-B, Vosper, DF, Roberts, CM & Scourse, JD 2025, 'The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits', Journal of Geophysical Research: Oceans, cyfrol. 130, rhif 4, e2024JC022092. https://doi.org/10.1029/2024JC022092

APA

Ward, S., Bradley, S. L., Roseby, Z. A., Wilmes, S.-B., Vosper, D. F., Roberts, C. M., & Scourse, J. D. (2025). The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits. Journal of Geophysical Research: Oceans, 130(4), Erthygl e2024JC022092. https://doi.org/10.1029/2024JC022092

CBE

Ward S, Bradley SL, Roseby ZA, Wilmes S-B, Vosper DF, Roberts CM, Scourse JD. 2025. The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits. Journal of Geophysical Research: Oceans. 130(4):Article e2024JC022092. https://doi.org/10.1029/2024JC022092

MLA

VancouverVancouver

Ward S, Bradley SL, Roseby ZA, Wilmes SB, Vosper DF, Roberts CM et al. The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits. Journal of Geophysical Research: Oceans. 2025 Ebr 4;130(4):e2024JC022092. doi: 10.1029/2024JC022092

Author

Ward, Sophie ; Bradley, S. L. ; Roseby, Z. A. et al. / The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits. Yn: Journal of Geophysical Research: Oceans. 2025 ; Cyfrol 130, Rhif 4.

RIS

TY - JOUR

T1 - The Role of Long-Term Hydrodynamic Evolution in the Accumulation and Preservation of Organic Carbon-Rich Shelf Sea Deposits

AU - Ward, Sophie

AU - Bradley, S. L.

AU - Roseby, Z. A.

AU - Wilmes, Sophie-Berenice

AU - Vosper, D. F.

AU - Roberts, C. M.

AU - Scourse, J. D.

PY - 2025/4/4

Y1 - 2025/4/4

N2 - Understanding and mapping seabed sediment distribution in shelf seas is essential for effective coastal management, offshore developments, and for blue carbon stock assessments and conservation. Fine-grained marine sediments, particularly muds, play a key role in long-term organic carbon sequestration, so knowledge of the spatial extent of these carbon-rich deposits is important. Here, we consider how changes in shelf sea tidal dynamics since the Last Glacial Maximum have influenced the development of three mud depocenters in the northwest European shelf seas: the Fladen Ground, the Celtic Deep, and the Western Irish Sea Mud Belt. Using a new high-resolution paleotidal model, we demonstrate how the evolution of simulated tidal parameters, including bed shear stress and bottom boundary layer thickness, differ across these sites. Geological data support our findings, indicating that long-term mud sedimentation continues to the present in the Celtic Deep and Western Irish Sea Mud Belt, while in the Fladen Ground, accumulation cannot be fully explained by contemporary hydrodynamics. In the latter, mud deposition is relict, deposited during quiescent tidal conditions between 17,000 and 5,000 years ago. We suggest that simulating paleoceanographic conditions can contribute to understanding first-order sediment dynamics over large spatial and temporal scales, a key input for predictive mapping and regional blue carbon inventories. This approach is a valuable first step in data-poor regions to identify potential fine sediment deposits. By illustrating the temporal evolution of organic carbon-rich deposits, we provide a broader context for managing organic carbon storage in shelf sea sedimentary environments.

AB - Understanding and mapping seabed sediment distribution in shelf seas is essential for effective coastal management, offshore developments, and for blue carbon stock assessments and conservation. Fine-grained marine sediments, particularly muds, play a key role in long-term organic carbon sequestration, so knowledge of the spatial extent of these carbon-rich deposits is important. Here, we consider how changes in shelf sea tidal dynamics since the Last Glacial Maximum have influenced the development of three mud depocenters in the northwest European shelf seas: the Fladen Ground, the Celtic Deep, and the Western Irish Sea Mud Belt. Using a new high-resolution paleotidal model, we demonstrate how the evolution of simulated tidal parameters, including bed shear stress and bottom boundary layer thickness, differ across these sites. Geological data support our findings, indicating that long-term mud sedimentation continues to the present in the Celtic Deep and Western Irish Sea Mud Belt, while in the Fladen Ground, accumulation cannot be fully explained by contemporary hydrodynamics. In the latter, mud deposition is relict, deposited during quiescent tidal conditions between 17,000 and 5,000 years ago. We suggest that simulating paleoceanographic conditions can contribute to understanding first-order sediment dynamics over large spatial and temporal scales, a key input for predictive mapping and regional blue carbon inventories. This approach is a valuable first step in data-poor regions to identify potential fine sediment deposits. By illustrating the temporal evolution of organic carbon-rich deposits, we provide a broader context for managing organic carbon storage in shelf sea sedimentary environments.

U2 - 10.1029/2024JC022092

DO - 10.1029/2024JC022092

M3 - Article

VL - 130

JO - Journal of Geophysical Research: Oceans

JF - Journal of Geophysical Research: Oceans

SN - 2169-9291

IS - 4

M1 - e2024JC022092

ER -