Theory identity: A machine-learning approach

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad i Gynhadledd

Fersiynau electronig

Dangosydd eitem ddigidol (DOI)

  • Kai R. Larsen
  • Dirk Hovorka
  • Jevin West
  • James Birt
  • James R. Pfaff
  • Trevor W. Chambers
  • Zebula R. Sampedro
  • Nick Zager
  • Bruce Vanstone
    Bond University
Theory identity is a fundamental problem for researchers seeking to determine theory quality, create theory ontologies and taxonomies, or perform focused theory-specific reviews and meta-analyses. We demonstrate a novel machine-learning approach to theory identification based on citation data and article features. The multi-disciplinary ecosystem of articles which cite a theory's originating paper is created and refined into the network of papers predicted to contribute to, and thus identify, a specific theory. We provide a 'proof-of-concept' for a highly-cited theory. Implications for cross-disciplinary theory integration and the identification of theories for a rapidly expanding scientific literature are discussed.
Iaith wreiddiolSaesneg
TeitlProceedings of the 47th Annual Hawaii International Conference on System Sciences, HICSS 2014
Man cyhoeddiUnited States
CyhoeddwrIEEE Computer Society Press
Tudalennau4639-4648
Nifer y tudalennau10
ISBN (Argraffiad)9781479925049
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2014
Cyhoeddwyd yn allanolIe
Gweld graff cysylltiadau