Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Polymer, 13.09.2017.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation
AU - Tochwin, Anna
AU - El-Betany, Alaa
AU - Tai, Hongyun
AU - Chan, Kai
AU - Blackburn, Chester
AU - Wang, Wenxin
PY - 2017/9/13
Y1 - 2017/9/13
N2 - Abstract: Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs) via one-pot reversible addition-fragmentation chain transfer (RAFT) copolymerisation of poly(ethylene glycol)methyl ether methacrylate (PEGMEMA, Mn = 475 g/mol), poly(propylene glycol)methacrylate (PPGMA, Mn = 375 g/mol), and disulfide diacrylate (DSDA) using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR) and Gel Permeation Chromatography (GPC). Differential Scanning Calorimetry (DSC) was used to determine lower critical solution temperatures (LCSTs) of these copolymers, which are in the range of 17–57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible) and crosslinkable (via thiol-ene click chemistry) properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications.
AB - Abstract: Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs) via one-pot reversible addition-fragmentation chain transfer (RAFT) copolymerisation of poly(ethylene glycol)methyl ether methacrylate (PEGMEMA, Mn = 475 g/mol), poly(propylene glycol)methacrylate (PPGMA, Mn = 375 g/mol), and disulfide diacrylate (DSDA) using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR) and Gel Permeation Chromatography (GPC). Differential Scanning Calorimetry (DSC) was used to determine lower critical solution temperatures (LCSTs) of these copolymers, which are in the range of 17–57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible) and crosslinkable (via thiol-ene click chemistry) properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications.
M3 - Article
JO - Polymer
JF - Polymer
SN - 0032-3861
ER -