Tracing the mineralization rates of C, N and S from cysteine and methionine in a grassland soil: A 14C and 35S dual-labelling study
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Soil Biology and Biochemistry, Cyfrol 177, 108906, 01.02.2023.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Tracing the mineralization rates of C, N and S from cysteine and methionine in a grassland soil: A 14C and 35S dual-labelling study
AU - Wang, Deying
AU - Chadwick, David R.
AU - Hill, Paul W.
AU - Ge, Tida
AU - Jones, Davey L.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - Sulphur-containing amino acids (i.e. Cysteine (Cys) and methionine (Met)) constitute an important proportion of the soil organic sulphur. However, detailed information regarding the microbial transformation of Cys and Met at a molecular level remain poorly characterized. To trace the fate of carbon (C) and sulphur (S) derived from Cys and Met in an agricultural grassland soil, a14C and 35S dual-isotopic labelling approach was adopted. We also investigated whether their mineralization was affected by manipulating C (added as glucose), nitrogen (N), phosphorus (P) and S (added as NH4NO3, KH2PO4 and K2SO4) availability in soil solution. Our results showed that over a 7-day incubation period, 67.2–89.2% of the 14C derived from Cys and Met was respired as 14CO2, 2.7–19.5% had been immobilized in the soil microbial biomass; while the recovery of 35S in soil solution ranged from 6.4 to 9.9%, with the reminder retained in the soil microbial biomass. Overall, our results indicated that soil microbial communities possess a high capacity to utilize Cys and Met. Furthermore, using the 14C and 35S dual-labelling technique, we found that C and S derived from Cys and Met were microbially mineralized and immobilized at different rates, indicating that the cycles of these two elements were temporally decoupled at the molecular level. The addition of glucose-C increased 14CO2 respiration from Cys and Met after 7 d, while in comparison inorganic N, P and S addition had less effect on 14C and 35S partitioning.
AB - Sulphur-containing amino acids (i.e. Cysteine (Cys) and methionine (Met)) constitute an important proportion of the soil organic sulphur. However, detailed information regarding the microbial transformation of Cys and Met at a molecular level remain poorly characterized. To trace the fate of carbon (C) and sulphur (S) derived from Cys and Met in an agricultural grassland soil, a14C and 35S dual-isotopic labelling approach was adopted. We also investigated whether their mineralization was affected by manipulating C (added as glucose), nitrogen (N), phosphorus (P) and S (added as NH4NO3, KH2PO4 and K2SO4) availability in soil solution. Our results showed that over a 7-day incubation period, 67.2–89.2% of the 14C derived from Cys and Met was respired as 14CO2, 2.7–19.5% had been immobilized in the soil microbial biomass; while the recovery of 35S in soil solution ranged from 6.4 to 9.9%, with the reminder retained in the soil microbial biomass. Overall, our results indicated that soil microbial communities possess a high capacity to utilize Cys and Met. Furthermore, using the 14C and 35S dual-labelling technique, we found that C and S derived from Cys and Met were microbially mineralized and immobilized at different rates, indicating that the cycles of these two elements were temporally decoupled at the molecular level. The addition of glucose-C increased 14CO2 respiration from Cys and Met after 7 d, while in comparison inorganic N, P and S addition had less effect on 14C and 35S partitioning.
KW - Dissolved organic sulphur
KW - Nutrient availability
KW - Radioisotope tracers
KW - 14C tracer
KW - 35
KW - Grassland soil
U2 - 10.1016/j.soilbio.2022.108906
DO - 10.1016/j.soilbio.2022.108906
M3 - Article
VL - 177
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
SN - 0038-0717
M1 - 108906
ER -