Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • Iryna P. Mikheenko
    School of Sport and Exercise Sciences, University of Birmingham
  • Jaime Gomez-Bolivar
    University of Granada, Granada, Spain
  • Mohamed L. Merroun
    University of Granada, Granada, Spain
  • Lynne E. Macaskie
    School of Sport and Exercise Sciences, University of Birmingham
  • Surbhi Sharma
    School of Sport and Exercise Sciences, University of Birmingham
  • Marc Walker
    University of Warwick
  • Rachel A. Hand
    University of Warwick
  • Barry Grail
  • D. Barrie Johnson
  • Rafael L. Orozco
    School of Sport and Exercise Sciences, University of Birmingham
Biogas-energy is marginally profitable against the “parasitic” energy demands of processing biomass. Biogas involves microbial fermentation of feedstock hydrolyzate generated enzymatically or thermochemically. The latter also produces 5-hydroxymethyl furfural (5-HMF) which can be catalytically upgraded to 2, 5-dimethyl furan (DMF), a “drop in fuel.” An integrated process is proposed with side-stream upgrading into DMF to mitigate the “parasitic” energy demand. 5-HMF was upgraded using bacterially-supported Pd/Ru catalysts. Purpose-growth of bacteria adds additional process costs; Pd/Ru catalysts biofabricated using the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans were compared to those generated from a waste consortium of acidophilic sulfidogens (CAS). Methyl tetrahydrofuran (MTHF) was used as the extraction-reaction solvent to compare the use of bio-metallic Pd/Ru catalysts to upgrade 5-HMF to DMF from starch and cellulose hydrolyzates. MTHF extracted up to 65% of the 5-HMF, delivering solutions, respectively, containing 8.8 and 2.2 g 5-HMF/L MTHF. Commercial 5% (wt/wt) Ru-carbon catalyst upgraded 5-HMF from pure solution but it was ineffective against the hydrolyzates. Both types of bacterial catalyst (5wt%Pd/3-5wt% Ru) achieved this, bio-Pd/Ru on the CAS delivering the highest conversion yields. The yield of 5-HMF from starch-cellulose thermal treatment to 2,5 DMF was 224 and 127 g DMF/kg extracted 5-HMF, respectively, for CAS and D. desulfuricans catalysts, which would provide additional energy of 2.1 and 1.2 kWh/kg extracted 5-HMF. The CAS comprised a mixed population with three patterns of metallic nanoparticle (NP) deposition. Types I and II showed cell surface-localization of the Pd/Ru while type III localized NPs throughout the cell surface and cytoplasm. No metallic patterning in the NPs was shown via elemental mapping using energy dispersive X-ray microanalysis but co-localization with sulfur was observed. Analysis of the cell surfaces of the bulk populations by X-ray photoelectron spectroscopy confirmed the higher S content of the CAS bacteria as compared to D. desulfuricans and also the presence of Pd-S as well as Ru-S compounds and hence a mixed deposit of PdS, Pd(0), and Ru in the form of various +3, +4, and +6 oxidation states. The results are discussed in the context of recently-reported controlled palladium sulfide ensembles for an improved hydrogenation catalyst.
Iaith wreiddiolSaesneg
Rhif yr erthygl970
CyfnodolynFrontiers in Microbiology
Cyfrol10
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 10 Mai 2019

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau