Weak tides during Cryogenian glaciations

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • Mattias Green
  • Hannah Davies
    University of Lisbon
  • Joao Duarte
    University of Lisbon
  • Jessica Creveling
    Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, Oregon
  • Christopher Scotese
The severe “Snowball Earth” glaciations proposed to have existed during the Cryogenian period (720 to 635 million years ago) coincided with the breakup of one supercontinent and assembly of another. Whereas the presence of extensive continental ice sheets predicts a tidally energetic Snowball ocean due to the reduced ocean depth, the supercontinent palaeogeography predicts weak tides because the surrounding ocean is too large to host tidal resonances. Here we show, using an established numerical global tidal model and paleogeographic reconstructions, that the Cryogenian ocean hosted diminished tidal amplitudes and associated energy dissipation rates, reaching 10–50% of today’s rates, during the Snowball glaciations. We argue that the near-absence of Cryogenian tidal processes may have been one contributor to the prolonged glaciations if these were near-global. These results also constrain lunar distance and orbital evolution throughout the Cryogenian, and highlight that simulations of past oceans should include explicit tidally driven mixing processes.
Iaith wreiddiolSaesneg
Rhif yr erthygl6227
CyfnodolynNature Communications
Cyfrol11
Rhif y cyfnodolyn1
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 4 Rhag 2020

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau